ترغب بنشر مسار تعليمي؟ اضغط هنا

A model of spectral line broadening in signal forecasts for line-intensity mapping experiments

88   0   0.0 ( 0 )
 نشر من قبل Dongwoo Chung
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Line-intensity mapping observations will find fluctuations of integrated line emission are attenuated by varying degrees at small scales due to the width of the line emission profiles. This attenuation may significantly impact estimates of astrophysical or cosmological quantities derived from measurements. We consider a theoretical treatment of the effect of line broadening on both the clustering and shot-noise components of the power spectrum of a generic line-intensity power spectrum using a halo model. We then consider possible simplifications to allow easier application in analysis, particularly in the context of inferences that require numerous, repeated, fast computations of model line-intensity signals across a large parameter space. For the CO Mapping Array Project (COMAP) and the CO(1-0) line-intensity field at $zsim3$ serving as our primary case study, we expect a $sim10%$ attenuation of the spherically averaged power spectrum on average at relevant scales of $kapprox0.2$-$0.3$ Mpc$^{-1}$, compared to $sim25%$ for the interferometric Millimetre-wave Intensity Mapping Experiment (mmIME) targeting shot noise from CO lines at $zsim1$-$5$ at scales of $kgtrsim1$ Mpc$^{-1}$. We also consider the nature and amplitude of errors introduced by simplified treatments of line broadening, and find that while an approximation using a single effective velocity scale is sufficient for spherically-averaged power spectra, a more careful treatment is necessary when considering other statistics such as higher multipoles of the anisotropic power spectrum or the voxel intensity distribution.



قيم البحث

اقرأ أيضاً

Following the first two annual intensity mapping workshops at Stanford in March 2016 and Johns Hopkins in June 2017, we report on the recent advances in theory, instrumentation and observation that were presented in these meetings and some of the opp ortunities and challenges that were identified looking forward. With preliminary detections of CO, [CII], Lya and low-redshift 21cm, and a host of experiments set to go online in the next few years, the field is rapidly progressing on all fronts, with great anticipation for a flood of new exciting results. This current snapshot provides an efficient reference for experts in related fields and a useful resource for nonspecialists. We begin by introducing the concept of line-intensity mapping and then discuss the broad array of science goals that will be enabled, ranging from the history of star formation, reionization and galaxy evolution to measuring baryon acoustic oscillations at high redshift and constraining theories of dark matter, modified gravity and dark energy. After reviewing the first detections reported to date, we survey the experimental landscape, presenting the parameters and capabilities of relevant instruments such as COMAP, mmIMe, AIM-CO, CCAT-p, TIME, CONCERTO, CHIME, HIRAX, HERA, STARFIRE, MeerKAT/SKA and SPHEREx. Finally, we describe recent theoretical advances: different approaches to modeling line luminosity functions, several techniques to separate the desired signal from foregrounds, statistical methods to analyze the data, and frameworks to generate realistic intensity map simulations.
Line-Intensity Mapping is an emerging technique which promises new insights into the evolution of the Universe, from star formation at low redshifts to the epoch of reionization and cosmic dawn. It measures the integrated emission of atomic and molec ular spectral lines from galaxies and the intergalactic medium over a broad range of frequencies, using instruments with aperture requirements that are greatly relaxed relative to surveys for single objects. A coordinated, comprehensive, multi-line intensity-mapping experimental effort can efficiently probe over 80% of the volume of the observable Universe - a feat beyond the reach of other methods. Line-intensity mapping will uniquely address a wide array of pressing mysteries in galaxy evolution, cosmology, and fundamental physics. Among them are the cosmic history of star formation and galaxy evolution, the compositions of the interstellar and intergalactic media, the physical processes that take place during the epoch of reionization, cosmological inflation, the validity of Einsteins gravity theory on the largest scales, the nature of dark energy and the origin of dark matter.
Spectral line intensity mapping has been proposed as a promising tool to efficiently probe the cosmic reionization and the large-scale structure. Without detecting individual sources, line intensity mapping makes use of all available photons and meas ures the integrated light in the source confusion limit, to efficiently map the three-dimensional matter distribution on large scales as traced by a given emission line. One particular challenge is the separation of desired signals from astrophysical continuum foregrounds and line interlopers. Here we present a technique to extract large-scale structure information traced by emission lines from different redshifts, embedded in a three-dimensional intensity mapping data cube. The line redshifts are distinguished by the anisotropic shape of the power spectra when projected onto a common coordinate frame. We consider the case where high-redshift [CII] lines are confused with multiple low-redshift CO rotational lines. We present a semi-analytic model for [CII] and CO line estimates based on the cosmic infrared background measurements, and show that with a modest instrumental noise level and survey geometry, the large-scale [CII] and CO power spectrum amplitudes can be successfully extracted from a confusion-limited data set, without external information. We discuss the implications and limits of this technique for possible line intensity mapping experiments.
204 - Dongwoo T. Chung 2019
Line-intensity mapping, being an imperfect observation of the line-intensity field in a cosmological volume, will be subject to various anisotropies introduced in observation. Existing literature in the context of CO and [C II] line-intensity mapping often predicts only the real-space, spherically averaged line-intensity power spectrum, with some works considering anisotropies while examining projection of interloper emission. We explicitly consider a simplified picture of redshift-space distortions and instrumental effects due to limited resolution, and how these distort an isotropic line-intensity signal in real space and introduce strong apparent anisotropies. The results suggest that while signal loss due to limited instrumental resolution is unavoidable, measuring the quadrupole power spectrum in addition to the monopole would still break parameter degeneracies present in monopole-only constraints, even without a measurement of the full anisotropic power spectrum.
Observations of the high-redshift Universe using the 21 cm line of neutral hydrogen and complimentary emission lines from the first galaxies promise to open a new door for our understanding of the epoch of reionization. We present predictions for the [C II] 158-micron line and H I 21 cm emission from redshifts z=6--9 using high-dynamic-range cosmological simulations combined with semi-analytical models. We find that the CONCERTO experiment should be able to detect the large scale power spectrum of [C II] emission to redshifts of up to z=8 (signal-to-noise ratio ~ 1 at k = 0.1 h/cMpc with 1500 hr of integration). A Stage II experiment similar to CCAT-p should be able to detect [C II] from even higher redshifts to high significance for similar integration times (signal-to-noise ratio of ~50 at k = 0.2 h/cMpc at z=6--9). We study the possibility of combining such future [C II] measurements with 21 cm measurements using LOFAR and SKA to measure the [C II]-21cm cross power spectra, and find that a Stage II experiment should be able to measure the cross-power spectrum for k < 1 h/cMpc to signal-to-noise ratio of better than 10. We discuss the capability of such measurements to constrain astrophysical parameters relevant to reionization and show that a measurement of the [C II]-21cm cross power spectrum helps break the degeneracy between the mass and brightness of ionizing sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا