ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Wavelength Monitoring and Reverberation Mapping of a Changing Look Event in the Seyfert Galaxy NGC 3516

380   0   0.0 ( 0 )
 نشر من قبل Victor Oknyansky
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of photometric and spectroscopic monitoring campaigns of the changing look AGN NGC 3516 carried out in 2018 to 2020 covering the wavelength range from the X-ray to the optical. The facilities included the telescopes of the CMO SAI MSU, the 2.3-m WIRO telescope, and the XRT and UVOT of Swift. We found that NGC 3516 brightened to a high state and could be classified as Sy1.5 during the late spring of 2020. We have measured time delays in the responses of the Balmer and He II 4686 lines to continuum variations. In the case of the best-characterized broad H-beta line, the delay to continuum variability is about 17 days in the blue wing and is clearly shorter, 9 days, in the red, which is suggestive of inflow. As the broad lines strengthened, the blue side came to dominate the Balmer lines, resulting in very asymmetric profiles with blueshifted peaks during this high state. During the outburst the X-ray flux reached its maximum on 1 April 2020 and it was the highest value ever observed for NGC 3516 by the Swift observatory. The X-ray hard photon index became softer, about 1.8 in the maximum on 21 Apr 2020 compared to the mean about 0.7 during earlier epochs before 2020. We have found that the UV and optical variations correlated well (with a small time delay of 1-2 days) with the X-ray until the beginning of April 2020, but later, until the end of Jun. 2020, these variations were not correlated. We suggest that this fact may be a consequence of partial obscuration by Compton-thick clouds crossing the line of sight.



قيم البحث

اقرأ أيضاً

The changes of broad emission lines should be a crucial issue to understanding the physical properties of changing-look active galactic nucleus (CL-AGN). Here, we present the results of an intensive and homogeneous 6-month long reverberation mapping (RM) monitoring campaign during a low-activity state of the CL-AGN Seyfert galaxy NGC 3516. Photometric and spectroscopic monitoring was carried out during 2018--2019 with the Lijiang 2.4 m telescope. The sampling is 2 days in most nights, and the average sampling is $sim$3 days. The rest frame time lags of H$alpha$ and H$beta$ are $tau_{rm{H}alpha}=7.56^{+4.42}_{-2.10}$ days and $tau_{rm{H}beta}=7.50^{+2.05}_{-0.77}$ days, respectively. From a RMS H$beta$ line dispersion of $sigma_{rm{line}} = 1713.3 pm 46.7$ $rm{km}$ $rm{s^{-1}}$ and a virial factor of $f_{sigma}$ = 5.5, the central black hole mass of NGC 3516 is estimated to be $M_{rm{BH}}= 2.4^{+0.7}_{-0.3} times 10^{7} M_{odot}$, which is in agreement with previous estimates. The velocity-resolved delays show that the time lags increase towards negative velocity for both H$alpha$ and H$beta$. The velocity-resolved RM of H$alpha$ is done for the first time. These RM results are consistent with other observations before the spectral type change, indicating a basically constant BLR structure during the changing-look process. The CL model of changes of accretion rate seems to be favored by long-term H$beta$ variability and RM observations of NGC 3516.
NGC 2617 has attracted a lot of attention after the detection of the changes in spectral type, and its geometry and kinematics of broad-line region (BLR) are still ambiguous. In this paper, we present the high cadence ($sim$ 2 days) reverberation map ping campaign of NGC 2617 from 2019 October to 2020 May undertaken at Lijiang 2.4 m telescope. For the first time, the velocity-resolved reverberation signature of the object was successfully detected. Both H$alpha$ and H$beta$ show an asymmetrical profile with a peak in the velocity-resolved time lags. For each of both lines, the lag of the line core is longer than those of the relevant wings, and the peak of the velocity-resolved lags is slightly blueshifted. These characteristics are not consistent with the theoretical prediction of the inflow, outflow or Keplerian disk model. Our observations give the time lags ofH$alpha$, H$beta$, H$gamma$, and He I, with a ratio of $tau_{rm{H}alpha}$:$tau_{rm{H}beta}$:$tau_{rm{H}gamma}$:$tau_{rm{He~I}}$ = 1.27:1.00:0.89:0.20, which indicates a stratified structure in the BLR of the object. It is the first time that the lags of H$alpha$ and He I are obtained. Assuming a virial factor of $f$ = 5.5 for dispersion width of line, the masses of black hole derived from H$alpha$ and H$beta$ are $rm{23.8^{+5.4}_{-2.7}}$ and $rm{21.1^{+3.8}_{-4.4}} times 10^{6}M_{odot}$, respectively. Our observed results indicate the complexity of the BLR of NGC 2617.
A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A ver y low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.
The results of spectral observations of NGC 3516 with the 2-m telescope of the Shamakhy Astrophysical Observatory during 2016-2020 are presented. In the first half of 2016, the intensive broad component Hbeta was found, which indicates a spectral typ e change compared to 2014, when the broad component was almost invisible. In the second half of 2016, the broad component H${beta}$ again was weakened and was practically not observed, remaining as weak until the end of 2019. At the end of 2019, the broad component Hbeta strengthened again, and in May 2020 reached a typical level for the high state of the object. During 2016-2020 we observed several changing looks of NGC 3516.
We report the results of reverberation mapping three bright Seyfert galaxies, Mrk 79, NGC 3227, and Mrk 841, from a campaign conducted from December 2016 to May 2017 with the Wyoming Infrared Observatory (WIRO) 2.3-meter telescope. All three of these targets have shown asymmetric broad H$beta$ emission lines in the past, although their emission lines were relatively symmetric during our observations. We measured Hbeta time lags for all three targets and estimated masses of their black holes -- for the first time in the case of Mrk 841. For Mrk 79 and NGC 3227, the data are of sufficient quality to resolve distinct time lags as a function of velocity and to compute two-dimensional velocity-delay maps. Mrk 79 shows smaller time lags for high-velocity gas but the distribution is not symmetric, and its complex velocity-delay map could result from the combination of both inflowing and outflowing Hbeta emitting disks that may be part of a single larger structure. NGC 3227 shows the largest time lags for blueshifted gas and the two-dimensional velocity-delay map suggests a disk with some inflow. We compare our results with previous work and find evidence for different time lags despite similar luminosities, as well as evolving broad line region structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا