ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal probabilistic distillation of quantum coherence

307   0   0.0 ( 0 )
 نشر من قبل Chonglong Liu
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Coherence distillation is a central topic of the resource theory of coherence and various coherence distillation protocols were proposed. In this paper, we investigate the optimal probabilistic coherence distillation protocol, whose aim is to transform a coherent state into a set of $n$-level maximally coherent states by using strictly incoherent operations. Specifically, we accomplish this protocol by presenting an analytical expression for the maximal average distillable coherence for a general state and constructing the corresponding operation achieving this bound. Our protocol is a universal protocol since it can be applied to any coherence measure.

قيم البحث

اقرأ أيضاً

We present an optimal probabilistic protocol to distill quantum coherence. Inspired by a specific entanglement distillation protocol, our main result yields a strictly incoherent operation that produces one of a family of maximally coherent states of variable dimension from any pure quantum state. We also expand this protocol to the case where it is possible, for some initial states, to avert any waste of resources as far as the output states are concerned, by exploiting an additional transformation into a suitable intermediate state. These results provide practical schemes for efficient quantum resource manipulation.
85 - C. L. Liu , D. L. Zhou 2020
The remarkable phenomenon of catalyst tells us that adding a catalyst could help state transformation. In this paper, we consider the problem of catalyst-assisted probabilistic coherence distillation for mixed states under strictly incoherent operati ons. To this end, we first present the necessary and sufficient conditions for distilling a target pure coherent state from an initial mixed state via stochastic strictly incoherent operations and the maximal probability of obtaining the target pure state from the initial state. With the help of these results, we present the necessary and sufficient conditions for the existence of a catalyst that increases the maximal transformation probability.
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are a llowed on the target system while general local quantum operations are permitted on the other, an operational paradigm that we call local quantum-incoherent operations and classical communication (LQICC). We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.
We characterize the operational task of environment-assisted distillation of quantum coherence under different sets of free operations when only a finite supply of copies of a given state is available. We first evaluate the one-shot assisted distilla ble coherence exactly, and introduce a semidefinite programming bound on it in terms of a smooth entropic quantity. We prove the bound to be tight for all systems in dimensions 2 and 3, which allows us to obtain computable expressions for the one-shot rate of distillation, establish an analytical expression for the best achievable fidelity of assisted distillation for any finite number of copies, and fully solve the problem of asymptotic zero-error assisted distillation for qubit and qutrit systems. Our characterization shows that all relevant sets of free operations in the resource theory of coherence have exactly the same power in the task of one-shot assisted coherence distillation, and furthermore resolves a conjecture regarding the additivity of coherence of assistance in dimension 3.
216 - C. L. Liu , D. L. Zhou 2019
Coherence distillation is one of the central problems in the resource theory of coherence. In this Letter, we complete the deterministic distillation of quantum coherence for a finite number of coherent states under strictly incoherent operations. Sp ecifically, we find the necessary and sufficient condition for the transformation from a mixed coherent state into a pure state via strictly incoherent operations, which recovers a connection between the resource theory of coherence and the algebraic theory of majorization lattice. With the help of this condition, we present the deterministic coherence distillation scheme and derive the maximum number of maximally coherent states obtained via this scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا