ﻻ يوجد ملخص باللغة العربية
We present a multi-wavelength investigation of a C-class flaring activity that occurred in the active region NOAA 12734 on 8 March 2019. The investigation utilises data from AIA and HMI on board the SDO and the Udaipur-CALLISTO solar radio spectrograph of the Physical Research Laboratory. This low intensity C1.3 event is characterised by typical features of a long duration event (LDE), viz. extended flare arcade, large-scale two-ribbon structures and twin coronal dimmings. The eruptive event occurred in a coronal sigmoid and displayed two distinct stages of energy release, manifested in terms of temporal and spatial evolution. The formation of twin dimming regions are consistent with the eruption of a large flux rope with footpoints lying in the western and eastern edges of the coronal sigmoid. The metric radio observations obtained from Udaipur-CALLISTO reveals a broad-band ($approx$50-180 MHz), stationary plasma emission for $approx$7 min during the second stage of the flaring activity that resemble a type IV radio burst. A type III decametre-hectometre radio bursts with starting frequency of $approx$2.5 MHz precedes the stationary type IV burst observed by Udaipur-CALLISTO by $approx$5 min. The synthesis of multi-wavelength observations and Non-Linear Force Free Field (NLFFF) coronal modelling together with magnetic decay index analysis suggests that the sigmoid flux rope underwent a zipping-like uprooting from its western to eastern footpoints in response to the overlying asymmetric magnetic field confinement. The asymmetrical eruption of the flux rope also accounts for the observed large-scale structures viz. apparent eastward shift of flare ribbons and post flare loops along the polarity inversion line (PIL), and provides an evidence for lateral progression of magnetic reconnection site as the eruption proceeds.
In this article, we investigate the formation and disruption of a coronal sigmoid from the active region (AR) NOAA 11909 on 07 December 2013, by analyzing multi-wavelength and multi-instrument observations. Our analysis suggests that the formation of
How much electromagnetic energy crosses the photosphere in evolving solar active regions? With the advent of high-cadence vector magnetic field observations, addressing this fundamental question has become tractable. In this paper, we apply the PTD-D
We present a multiwavelength analysis of two homologous, short lived, impulsive flares of GOES class M1.4 and M7.3, that occurred from a very localized mini-sigmoid region within the active region NOAA 12673 on 2017 September 7. Both flares were asso
The magnetic field plays a key role in producing solar flares, so that the investigation on the relationship between the magnetic field properties and flares is significant. In this paper, based on the magnetic field extrapolated from the photospheri
We investigate the formation, activation and eruption of a flux rope from the sigmoid active region NOAA 11719 by analyzing E(UV), X-ray and radio measurements. During the pre-eruption period of ~7 hours, the AIA 94 A images reveal the emergence of a