ﻻ يوجد ملخص باللغة العربية
The $pi$ -calculus is used as a model for programminglanguages. Its contexts exhibit arbitrary concurrency, makingthem very discriminating. This may prevent validating desir-able behavioural equivalences in cases when more disciplinedcontexts are expected.In this paper we focus on two such common disciplines:sequentiality, meaning that at any time there is a single threadof computation, and well-bracketing, meaning that calls toexternal services obey a stack-like discipline. We formalise thedisciplines by means of type systems. The main focus of thepaper is on studying the consequence of the disciplines onbehavioural equivalence. We define and study labelled bisim-ilarities for sequentiality and well-bracketing. These relationsare coarser than ordinary bisimilarity. We prove that they aresound for the respective (contextual) barbed equivalence, andalso complete under a certain technical condition.We show the usefulness of our techniques on a number ofexamples, that have mainly to do with the representation offunctions and store.
We study whether, in the pi-calculus, the match prefix-a conditional operator testing two names for (syntactic) equality-is expressible via the other operators. Previously, Carbone and Maffeis proved that matching is not expressible this way under ra
Formalising the pi-calculus is an illuminating test of the expressiveness of logical frameworks and mechanised metatheory systems, because of the presence of name binding, labelled transitions with name extrusion, bisimulation, and structural congrue
We study the relation between process calculi that differ in their either synchronous or asynchronous interaction mechanism. Concretely, we are interested in the conditions under which synchronous interaction can be implemented using just asynchronou
Process calculi may be compared in their expressive power by means of encodings between them. A widely accepted definition of what constitutes a valid encoding for (dis)proving relative expressiveness results between process calculi was proposed by G
We present a type system to guarantee termination of pi-calculus processes that exploits input/output capabilities and subtyping, as originally introduced by Pierce and Sangiorgi, in order to analyse the usage of channels. We show that our system imp