ﻻ يوجد ملخص باللغة العربية
In the first main result of this paper we prove that one can approximate discontinious solutions of the 1d Navier Stokes system with solutions of the 1d Navier-Stokes-Korteweg system as the capilarity parameter tends to 0. Moreover, we allow the viscosity coefficients $mu$ = $mu$ ($rho$) to degenerate near vaccum. In order to obtain this result, we propose two main technical novelties. First of all, we provide an upper bound for the density verifing NSK that does not degenerate when the capillarity coefficient tends to 0. Second of all, we are able to show that the positive part of the effective velocity is bounded uniformly w.r.t. the capillary coefficient. This turns out to be crucial in providing a lower bound for the density. The second main result states the existene of unique finite-energy global strong solutions for the 1d Navier-Stokes system assuming only that $rho$0, 1/$rho$0 $in$ L $infty$. This last result finds itself a natural application in the context of the mathematical modeling of multiphase flows.
We prove existence and uniqueness of a solution to the Cauchy problem corresponding to the equation begin{equation*} begin{cases} partial_t u_{varepsilon,delta} +mathrm{div} {mathfrak f}_{varepsilon,delta}({bf x}, u_{varepsilon,delta})=varepsilon Del
We consider the damped and driven Navier--Stokes system with stress free boundary conditions and the damped Euler system in a bounded domain $Omegasubsetmathbf{R}^2$. We show that the damped Euler system has a (strong) global attractor in~$H^1(Omega)
In this paper, we study a free boundary problem for compressible spherically symmetric Navier-Stokes equations without a solid core. Under certain assumptions imposed on the initial data, we obtain the global existence and uniqueness of the weak solu
In this paper, the main objective is to generalize to the Navier-Stokes-Korteweg (with density dependent viscosities satisfying the BD relation) and Euler-Korteweg systems a recent relative entropy [proposed by D. Bresch, P. Noble and J.--P. Vila, (2
We consider the compressible Navier-Stokes-Korteweg system describing the dynamics of a liquid-vapor mixture with diffuse interphase. The global solutions are established under linear stability conditions in critical Besov spaces. In particular, the