ترغب بنشر مسار تعليمي؟ اضغط هنا

Approximate option pricing formula for Barndorff-Nielsen and Shephard model

190   0   0.0 ( 0 )
 نشر من قبل Takuji Arai
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English
 تأليف Takuji Arai




اسأل ChatGPT حول البحث

For the Barndorff-Nielsen and Shephard model, we present approximate expressions of call option prices based on the decomposition formula developed by Arai (2021). Besides, some numerical experiments are also implemented to make sure how effective our approximations are.



قيم البحث

اقرأ أيضاً

103 - Takuji Arai 2020
The objective is to provide an Al`os type decomposition formula of call option prices for the Barndorff-Nielsen and Shephard model: an Ornstein-Uhlenbeck type stochastic volatility model driven by a subordinator without drift. Al`os (2012) introduced a decomposition expression for the Heston model by using Itos formula. In this paper, we extend it to the Barndorff-Nielsen and Shephard model. As far as we know, this is the first result on the Al`os type decomposition formula for models with infinite active jumps.
67 - Takuji Arai 2019
The VIX call options for the Barndorff-Nielsen and Shephard models will be discussed. Derivatives written on the VIX, which is the most popular volatility measurement, have been traded actively very much. In this paper, we give representations of the VIX call option price for the Barndorff-Nielsen and Shephard models: non-Gaussian Ornstein--Uhlenbeck type stochastic volatility models. Moreover, we provide representations of the locally risk-minimizing strategy constructed by a combination of the underlying riskless and risky assets. Remark that the representations obtained in this paper are efficient to develop a numerical method using the fast Fourier transform. Thus, numerical experiments will be implemented in the last section of this paper.
We obtain explicit representations of locally risk-minimizing strategies of call and put options for the Barndorff-Nielsen and Shephard models, which are Ornstein--Uhlenbeck-type stochastic volatility models. Using Malliavin calculus for Levy process es, Arai and Suzuki (2015) obtained a formula for locally risk-minimizing strategies for Levy markets under many additional conditions. Supposing mild conditions, we make sure that the Barndorff-Nielsen and Shephard models satisfy all the conditions imposed in Arai and Suzuki (2015). Among others, we investigate the Malliavin differentiability of the density of the minimal martingale measure. Moreover, some numerical experiments for locally risk-minimizing strategies are introduced.
211 - Takuji Arai 2015
We derive representations of local risk-minimization of call and put options for Barndorff-Nielsen and Shephard models: jump type stochastic volatility models whose squared volatility process is given by a non-Gaussian rnstein-Uhlenbeck process. The general form of Barndorff-Nielsen and Shephard models includes two parameters: volatility risk premium $beta$ and leverage effect $rho$. Arai and Suzuki (2015, arxiv:1503.08589) dealt with the same problem under constraint $beta=-frac{1}{2}$. In this paper, we relax the restriction on $beta$; and restrict $rho$ to $0$ instead. We introduce a Malliavin calculus under the minimal martingale measure to solve the problem.
The recently developed rough Bergomi (rBergomi) model is a rough fractional stochastic volatility (RFSV) model which can generate more realistic term structure of at-the-money volatility skews compared with other RFSV models. However, its non-Markovi anity brings mathematical and computational challenges for model calibration and simulation. To overcome these difficulties, we show that the rBergomi model can be approximated by the Bergomi model, which has the Markovian property. Our main theoretical result is to establish and describe the affine structure of the rBergomi model. We demonstrate the efficiency and accuracy of our method by implementing a Markovian approximation algorithm based on a hybrid scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا