ترغب بنشر مسار تعليمي؟ اضغط هنا

GraghVQA: Language-Guided Graph Neural Networks for Graph-based Visual Question Answering

146   0   0.0 ( 0 )
 نشر من قبل Weixin Liang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Images are more than a collection of objects or attributes -- they represent a web of relationships among interconnected objects. Scene Graph has emerged as a new modality for a structured graphical representation of images. Scene Graph encodes objects as nodes connected via pairwise relations as edges. To support question answering on scene graphs, we propose GraphVQA, a language-guided graph neural network framework that translates and executes a natural language question as multiple iterations of message passing among graph nodes. We explore the design space of GraphVQA framework, and discuss the trade-off of different design choices. Our experiments on GQA dataset show that GraphVQA outperforms the state-of-the-art model by a large margin (88.43% vs. 94.78%).



قيم البحث

اقرأ أيضاً

Fact-based Visual Question Answering (FVQA), a challenging variant of VQA, requires a QA-system to include facts from a diverse knowledge graph (KG) in its reasoning process to produce an answer. Large KGs, especially common-sense KGs, are known to b e incomplete, i.e., not all non-existent facts are always incorrect. Therefore, being able to reason over incomplete KGs for QA is a critical requirement in real-world applications that has not been addressed extensively in the literature. We develop a novel QA architecture that allows us to reason over incomplete KGs, something current FVQA state-of-the-art (SOTA) approaches lack due to their critical reliance on fact retrieval. We use KG Embeddings, a technique widely used for KG completion, for the downstream task of FVQA. We also employ a new image representation technique we call Image-as-Knowledge to enable this capability, alongside a simple one-step CoAttention mechanism to attend to text and image during QA. Our FVQA architecture is faster during inference time, being O(m), as opposed to existing FVQA SOTA methods which are O(N log N), where m = number of vertices, N = number of edges = O(m^2). KG embeddings are shown to hold complementary information to word embeddings: a combination of both metrics permits performance comparable to SOTA methods in the standard answer retrieval task, and significantly better (26% absolute) in the proposed missing-edge reasoning task.
106 - Yanze Wu , Qiang Sun , Jianqi Ma 2019
This paper studies the task of Visual Question Answering (VQA), which is topical in Multimedia community recently. Particularly, we explore two critical research problems existed in VQA: (1) efficiently fusing the visual and textual modalities; (2) e nabling the visual reasoning ability of VQA models in answering complex questions. To address these challenging problems, a novel Question Guided Modular Routing Networks (QGMRN) has been proposed in this paper. Particularly, The QGMRN is composed of visual, textual and routing network. The visual and textual network serve as the backbones for the generic feature extractors of visual and textual modalities. QGMRN can fuse the visual and textual modalities at multiple semantic levels. Typically, the visual reasoning is facilitated by the routing network in a discrete and stochastic way by using Gumbel-Softmax trick for module selection. When the input reaches a certain modular layer, routing network newly proposed in this paper, dynamically selects a portion of modules from that layer to process the input depending on the question features generated by the textual network. It can also learn to reason by routing between the generic modules without additional supervision information or expert knowledge. Benefiting from the dynamic routing mechanism, QGMRN can outperform the previous classical VQA methods by a large margin and achieve the competitive results against the state-of-the-art methods. Furthermore, attention mechanism is integrated into our QGMRN model and thus can further boost the model performance. Empirically, extensive experiments on the CLEVR and CLEVR-Humans datasets validate the effectiveness of our proposed model, and the state-of-the-art performance has been achieved.
105 - Yuwei Fang , Siqi Sun , Zhe Gan 2019
In this paper, we present Hierarchical Graph Network (HGN) for multi-hop question answering. To aggregate clues from scattered texts across multiple paragraphs, a hierarchical graph is created by constructing nodes on different levels of granularity (questions, paragraphs, sentences, entities), the representations of which are initialized with pre-trained contextual encoders. Given this hierarchical graph, the initial node representations are updated through graph propagation, and multi-hop reasoning is performed via traversing through the graph edges for each subsequent sub-task (e.g., paragraph selection, supporting facts extraction, answer prediction). By weaving heterogeneous nodes into an integral unified graph, this hierarchical differentiation of node granularity enables HGN to support different question answering sub-tasks simultaneously. Experiments on the HotpotQA benchmark demonstrate that the proposed model achieves new state of the art, outperforming existing multi-hop QA approaches.
Incorporating external knowledge to Visual Question Answering (VQA) has become a vital practical need. Existing methods mostly adopt pipeline approaches with different components for knowledge matching and extraction, feature learning, etc.However, s uch pipeline approaches suffer when some component does not perform well, which leads to error propagation and poor overall performance. Furthermore, the majority of existing approaches ignore the answer bias issue -- many answers may have never appeared during training (i.e., unseen answers) in real-word application. To bridge these gaps, in this paper, we propose a Zero-shot VQA algorithm using knowledge graphs and a mask-based learning mechanism for better incorporating external knowledge, and present new answer-based Zero-shot VQA splits for the F-VQA dataset. Experiments show that our method can achieve state-of-the-art performance in Zero-shot VQA with unseen answers, meanwhile dramatically augment existing end-to-end models on the normal F-VQA task.
Commonsense question answering (QA) requires a model to grasp commonsense and factual knowledge to answer questions about world events. Many prior methods couple language modeling with knowledge graphs (KG). However, although a KG contains rich struc tural information, it lacks the context to provide a more precise understanding of the concepts. This creates a gap when fusing knowledge graphs into language modeling, especially when there is insufficient labeled data. Thus, we propose to employ external entity descriptions to provide contextual information for knowledge understanding. We retrieve descriptions of related concepts from Wiktionary and feed them as additional input to pre-trained language models. The resulting model achieves state-of-the-art result in the CommonsenseQA dataset and the best result among non-generative models in OpenBookQA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا