ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual spin dynamics in the low-temperature magnetically ordered state of Ag$_{3}$LiIr$_{2}$O$_{6}$

129   0   0.0 ( 0 )
 نشر من قبل Avinash Mahajan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Atasi Chakraborty




اسأل ChatGPT حول البحث

Recently, there have been contrary claims of Kitaev spin-liquid behaviour and ordered behavior in the honeycomb compound Ag$_3$LiIr$_2$O$_6$ based on various experimental signatures. Our investigations on this system reveal a low-temperature ordered state with persistent dynamics down to the lowest temperatures. Magnetic order is confirmed by clear oscillations in the muon spin relaxation ($mu$SR) time spectrum below 9 K till 52 mK. Coincidentally in $^7$Li nuclear magnetic resonance, a wipe-out of the signal is observed below $sim$ 10 K which again strongly indicates magnetic order in the low temperature regime. This is supported by our density functional theory calculations which show an appreciable Heisenberg exchange term in the spin Hamiltonian that favors magnetic ordering. The $^7$Li shift and spin-lattice relaxation rate also show anomalies at $sim$ 50 K. They are likely related to the onset of dynamic magnetic correlations, but their origin is not completely clear. Detailed analysis of our $mu$SR data is consistent with a co-existence of incommensurate Neel and striped environments. A significant and undiminished dynamical relaxation rate ($sim 5$ MHz) as seen in $mu$SR deep into the ordered phase indicates enhanced quantum fluctuations in the ordered state.



قيم البحث

اقرأ أيضاً

H3LiIr2O6 is the first honeycomb-lattice system without any signs of long-range magnetic order down to the lowest temperatures, raising the hope for the realization of an ideal Kitaev quantum spin liquid. Its honeycomb layers are coupled by interlaye r hydrogen bonds. Static or dynamic disorder of these hydrogen bonds was proposed to strongly affect the magnetic exchange and to make Kitaev-type interactions dominant. Using dielectric spectroscopy, here we provide experimental evidence for dipolar relaxations in H3LiIr2O6 and deuterated D3LiIr2O6, which mirror the dynamics of protons and deuterons within the double-well potentials of the hydrogen bonds. The detected hydrogen dynamics reveals glassy freezing, characterized by a strong slowing down under cooling, with a crossover from thermally-activated hopping to quantum-mechanical tunneling towards low temperatures. Thus, besides being Kitaev quantum-spin-liquid candidates, these materials also are quantum paraelectrics. However, the small relaxation rates in the mHz range, found at low temperatures, practically realize quasi-static hydrogen disorder, as assumed in recent theoretical works to explain the quantum-spin-liquid ground state of both compounds.
Using thermodynamic measurements, neutron diffraction, nuclear magnetic resonance, and muon spin relaxation, we establish putative quantum spin-liquid behavior in Ba$_3$InIr$_2$O$_9$, where unpaired electrons are localized on mixed-valence Ir$_2$O$_9 $ dimers with Ir$^{4.5+}$ ions. Despite the antiferromagnetic Curie-Weiss temperature on the order of 10 K, neither long-range magnetic order nor spin freezing are observed down to at least 20 mK, such that spins are short-range correlated and dynamic over nearly three decades in temperature. Quadratic power-law behavior of both the spin-lattice relaxation rate and specific heat indicates the gapless nature of the ground state. We envisage that this exotic behavior may be related to an unprecedented combination of the triangular and buckled honeycomb geometries of nearest-neighbor exchange couplings in the mixed-valence setting.
Kitaev magnets are materials with bond-dependent Ising interactions between localized spins on a honeycomb lattice. Such interactions could lead to a quantum spin-liquid (QSL) ground state at zero temperature. Recent theoretical studies suggest two p otential signatures of a QSL at finite temperatures, namely a scaling behavior of thermodynamic quantities in the presence of quenched disorder, and a two-step release of the magnetic entropy. Here, we present both signatures in Ag$_{3}$LiIr$_{2}$O$_{6}$ which is synthesized from $alpha$-Li$_{2}$IrO$_{3}$ by replacing the inter-layer Li atoms with Ag atoms. In addition, the DC susceptibility data confirm absence of a long-range order, and the AC susceptibility data rule out a spin-glass transition. These observations suggest a closer proximity to the QSL in Ag$_{3}$LiIr$_{2}$O$_{6}$ compared to its parent compound $alpha$-Li$_{2}$IrO$_{3}$ that orders at 15 K. We discuss an enhanced spin-orbit coupling due to a mixing between silver d and oxygen p orbitals as a potential underlying mechanism.
Searching for an ideal Kitaev spin liquid candidate with anyonic excitations and long-range entanglement has motivated the synthesis of a new family of intercalated Kitaev magnets such as H$_{3}$LiIr$_{2}$O$_{6}$, Cu$_{2}$IrO$_{3}$, and Ag$_{3}$LiIr$ _{2}$O$_{6}$. The absence of a susceptibility peak and a two-step release of the magnetic entropy in these materials has been proposed as evidence of proximity to the Kitaev spin liquid. Here we present a comparative study of the magnetic susceptibility, heat capacity, and muon spin relaxation ($mu$SR) between two samples of Ag$_{3}$LiIr$_{2}$O$_{6}$ in the clean and disordered limits. In the disordered limit, the absence of a peak in either susceptibility or heat capacity and a weakly depolarizing $mu$SR signal may suggest a proximate spin liquid ground state. In the clean limit, however, we resolve a peak in both susceptibility and heat capacity data, and observe clear oscillations in $mu$SR that confirm long-range antiferromagnetic ordering. The $mu$SR oscillations fit to a Bessel function, characteristic of an incommensurate order, as reported in the parent compound $alpha$-Li$_{2}$IrO$_{3}$. Our results clarify the role of structural disorder in the intercalated Kitaev magnets.
We use x-ray spectroscopy at Ir L$_3$/L$_2$ absorption edge to study powder samples of the intercalated honeycomb magnet Ag$_3$LiIr$_2$O$_6$. Based on x-ray absorption and resonant inelastic x-ray scattering measurements, and exact diagonalization ca lculations including next-neighbour Ir-Ir electron hoping integrals, we argue that the intercalation of Ag atoms results in a nearly itinerant electronic structure with enhanced Ir-O hybridization. As a result of the departure from the local relativistic $j_{rm eff}! = !1/2$ state, we find that the relative orbital contribution to the magnetic moment is increased, and the magnetization density is spatially extended and asymmetric. Our results confirm the importance of metal - ligand hybridazation in the magnetism of transition metal oxides and provide empirical guidance for understanding the collective magnetism in intercalated honeycomb iridates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا