ﻻ يوجد ملخص باللغة العربية
We introduce a new method to establish time-quantitative density in flat dynamical systems. First we give a shorter and different proof of our earlier result that a half-infinite geodesic on an arbitrary finite polysquare surface P is superdense on P if the slope of the geodesic is a badly approximable number. We then adapt our method to study time-quantitative density of half-infinite geodesics on algebraic polyrectangle surfaces.
Consider a finite polysquare or square tiled region, a connected, but not necessarily simply-connected, polygonal region tiled with aligned unit squares. Using ideas from diophantine approximation, we prove that a half-infinite billiard orbit in such
The main purpose of the paper is to give explicit geodesics and billiard orbits in polysquares and polycubes that exhibit time-quantitative density. In many instances of the 2-dimensional case concerning finite polysquares and related systems, we can
We show that on any non-integrable finite polysquare translation surface, superdensity, an optimal form of time-quantitative density, leads to an optimal form of time-quantitative uniformity that we call super-micro-uniformity.
This paper is motivated by an interesting problem studied more than 50 years ago by Veech and which can be considered a parity, or mod 2, version of the classical equidistribution problem concerning the irrational rotation sequence. The Veech discret
Arithmetic class are closed subsets of the euclidean space which generalise arithmetical conditions encoutered in dynamical systems, such as diophantine conditions or Bruno type conditions. I prove density estimates for such sets using Dani-Kleinbock-Margulis techniques.