ﻻ يوجد ملخص باللغة العربية
The rapid solidification of a binary mixture in the region of the interface velocities $V$ close to the diffusion speed in the bulk of the liquid phase $V_D$ is considered within the framework of the local nonequilibrium approach. In this high-speed region the derivation of the analytical expression for the response function temperature-velocity representing kinetic phase diagram is given without using the concept of the equilibrium phase diagram. The modes of movement of the interface both without and with the drag effect are analyzed. It is shown that the drag effect can be accompanied by a local interface temperature maximum at $V = V_D$.
The process of rapid solidification of a binary mixture is considered in the framework of local nonequilibrium model (LNM) based on the assumption that there is no local equilibrium in solute diffusion in the bulk liquid and at the solid-liquid inter
Advanced phase-field techniques have been applied to address various aspects of polycrystalline solidification including different modes of crystal nucleation. The height of the nucleation barrier has been determined by solving the appropriate Euler-
We experimentally investigate transport properties of a hybrid structure, which consists of a thin single crystal SnSe flake on a top of 5~$mu$m spaced Au leads. The structure initially is in highly-conductive state, while it can be switched to low-c
Hydrogen has been the essential element in the development of atomic and molecular physics1). Moving to the properties of dense hydrogen has appeared a good deal more complex than originally thought by Wigner and Hungtinton in their seminal paper pre
We simulate solidification in a narrow channel through the use of a phase-field model with an adaptive grid. In different regimes, we find that the solid can grow in fingerlike steady-state shapes, or become unstable, exhibiting unsteady growth. At l