ﻻ يوجد ملخص باللغة العربية
The Slepian-Wolf bound on the admissible coding rate forms the most fundamental aspect of distributed source coding. As such, it is necessary to provide a framework with which to model more practical scenarios with respect to the arrangement of nodes in order to make Slepian-Wolf coding more suitable for multi-node Wireless Sensor Networks. This paper provides two practical scenarios in order to achieve this aim. The first is by grouping the nodes based on correlation while the second involves simplifying the structure using Markov correlation. It is found that although the bounds of these scenarios are more restrictive than the original Slepian-Wolf bound, the overall model and bound are simplified.
We present sufficient conditions for multicasting a set of correlated sources over cooperative networks. We propose joint source-Wyner-Ziv encoding/sliding-window decoding scheme, in which each receiver considers an ordered partition of other nodes.
This paper deals with the problem of multicasting a set of discrete memoryless correlated sources (DMCS) over a cooperative relay network. Necessary conditions with cut-set interpretation are presented. A emph{Joint source-Wyner-Ziv encoding/sliding
In this paper, we propose a polar coding based scheme for set reconciliation between two network nodes. The system is modeled as a well-known Slepian-Wolf setting induced by a fixed number of deletions. The set reconciliation process is divided into
This article proposes a novel iterative algorithm based on Low Density Parity Check (LDPC) codes for compression of correlated sources at rates approaching the Slepian-Wolf bound. The setup considered in the article looks at the problem of compressin
Cyclic codes, as linear block error-correcting codes in coding theory, play a vital role and have wide applications. Ding in cite{D} constructed a number of classes of cyclic codes from almost perfect nonlinear (APN) functions and planar functions ov