ﻻ يوجد ملخص باللغة العربية
Modeling human mobility has a wide range of applications from urban planning to simulations of disease spread. It is well known that humans spend 80% of their time indoors but modeling indoor human mobility is challenging due to three main reasons: (i) the absence of easily acquirable, reliable, low-cost indoor mobility datasets, (ii) high prediction space in modeling the frequent indoor mobility, and (iii) multi-scalar periodicity and correlations in mobility. To deal with all these challenges, we propose WiFiMod, a Transformer-based, data-driven approach that models indoor human mobility at multiple spatial scales using WiFi system logs. WiFiMod takes as input enterprise WiFi system logs to extract human mobility trajectories from smartphone digital traces. Next, for each extracted trajectory, we identify the mobility features at multiple spatial scales, macro, and micro, to design a multi-modal embedding Transformer that predicts user mobility for several hours to an entire day across multiple spatial granularities. Multi-modal embedding captures the mobility periodicity and correlations across various scales while Transformers capture long-term mobility dependencies boosting model prediction performance. This approach significantly reduces the prediction space by first predicting macro mobility, then modeling indoor scale mobility, micro-mobility, conditioned on the estimated macro mobility distribution, thereby using the topological constraint of the macro-scale. Experimental results show that WiFiMod achieves a prediction accuracy of at least 10% points higher than the current state-of-art models. Additionally, we present 3 real-world applications of WiFiMod - (i) predict high-density hot pockets for policy-making decisions for COVID19 or ILI, (ii) generate a realistic simulation of indoor mobility, (iii) design personal assistants.
We introduce WiCluster, a new machine learning (ML) approach for passive indoor positioning using radio frequency (RF) channel state information (CSI). WiCluster can predict both a zone-level position and a precise 2D or 3D position, without using an
The proliferation of wireless localization technologies provides a promising future for serving human beings in indoor scenarios. Their applications include real-time tracking, activity recognition, health care, navigation, emergence detection, and t
The period after the COVID-19 wave is called the Echo-period. Estimation of crowd size in an outdoor environment is essential in the Echo-period. Making a simple and flexible working system for the same is the need of the hour. This article proposes
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587
Accurate modelling of local population movement patterns is a core contemporary concern for urban policymakers, affecting both the short term deployment of public transport resources and the longer term planning of transport infrastructure. Yet, whil