ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Chandra Localizations and Gaia Distances and Proper Motions to Classify Hard X-ray Sources Discovered by INTEGRAL

112   0   0.0 ( 0 )
 نشر من قبل John A. Tomsick
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we report on X-ray observations of ten 17-60 keV sources discovered by the INTEGRAL satellite. The primary new information is sub-arcsecond positions obtained by the Chandra X-ray Observatory. In six cases (IGR J17040-4305, IGR J18017-3542, IGR J18112-2641, IGR J18434-0508, IGR J19504+3318, and IGR J20084+3221), a unique Chandra counterpart is identified with a high degree of certainty, and for five of these sources (all but J19504), Gaia distances or proper motions indicate that they are Galactic sources. For four of these, the most likely classifications are that the sources are magnetic Cataclysmic Variables (CVs). J20084 could be either a magnetic CV or a High Mass X-ray Binary. We classify the sixth source (J19504) as a likely Active Galactic Nucleus (AGN). In addition, we find likely Chandra counterparts to IGR J18010-3045 and IGR J19577+3339, and the latter is a bright radio source and probable AGN. The other two sources, IGR J12529-6351 and IGR J18013-3222 do not have likely Chandra counterparts, indicating that they are transient, highly variable, or highly absorbed.

قيم البحث

اقرأ أيضاً

The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has detected in excess of 1000 sources in the ~20-100 keV band during its surveys of the sky over the past 17 years. We obtained 5 ks observations of 15 unclassified IGR sources with the Chandra X-ray Observatory in order to localize them, to identify optical/IR counterparts, to measure their soft X-ray spectra, and to classify them. For 10 of the IGR sources, we detect Chandra sources that are likely (or in some cases certain) to be the counterparts. IGR J18007-4146 and IGR J15038-6021 both have Gaia parallax distances, placing them at 2.5+0.5-0.4 and 1.1+1.5-0.4 kpc, respectively. We tentatively classify both of them as intermediate polar-type Cataclysmic Variables. Also, IGR J17508-3219 is likely to be a Galactic source, but it is unclear if it is a Dwarf Nova or another type of transient. For IGR J17118-3155, we provide a Chandra localization, but it is unclear if the source is Galactic or extragalactic. Based on either near-IR/IR colors or the presence of extended near-IR emission, we classify four sources as Active Galactic Nuclei (IGR J16181-5407, IGR J16246-4556, IGR J17096-2527, and IGR J19294+1327), and IGR J20310+3835 and IGR J15541-5613 are AGN candidates. In addition, we identified an AGN in the INTEGRAL error circle of IGR J16120-3543 that is a possible counterpart.
We report on 0.3-10 keV observations with the Chandra X-ray Observatory of eight hard X-ray sources discovered within 8 degrees of the Galactic plane by the INTEGRAL satellite. The short (5 ks) Chandra observations of the IGR source fields have yield ed very likely identifications of X-ray counterparts for three of the IGR sources: IGR J14091-6108, IGR J18088-2741, and IGR J18381-0924. The first two have very hard spectra in the Chandra band that can be described by a power-law with photon indices of Gamma = 0.6+/-0.4 and -0.7(+0.4)(-0.3), respectively (90% confidence errors are given), and both have a unique near-IR counterpart consistent with the Chandra position. IGR J14091-6108 also displays a strong iron line and a relatively low X-ray luminosity, and we argue that the most likely source type is a Cataclysmic Variable (CV), although we do not completely rule out the possibility of a High Mass X-ray Binary. IGR J18088-2741 has an optical counterpart with a previously measured 6.84 hr periodicity, which may be the binary orbital period. We also detect five cycles of a possible 800-950 s period in the Chandra light curve, which may be the compact object spin period. We suggest that IGR J18088-2741 is also most likely a CV. For IGR J18381-0924, the spectrum is intrinsically softer with Gamma = 1.5(+0.5)(-0.4), and it is moderately absorbed, nH = (4+/-1)e22 cm-2. There are two near-IR sources consistent with the Chandra position, and they are both classified as galaxies, making it likely that IGR J18381-0924 is an Active Galactic Nucleus (AGN). For the other five IGR sources, we provide lists of nearby Chandra sources, which may be used along with further observations to identify the correct counterparts, and we discuss the implications of the low inferred Chandra count rates for these five sources.
We report optical spectroscopic identifications of 10 hard (2-10 keV) X-ray selected sources discovered by Chandra. The X-ray flux of the sources ranges between 1.5 and 25 x 10-14 cgs, the lower value being 3 times fainter than in previous BeppoSAX a nd ASCA surveys. Their R band magnitudes are in the range 12.8-22. Six of the Chandra sources are broad line quasars with redshifts between 0.42 and 1.19, while the optical identification of the remaining four is quite varied: two are X-ray obscured, emission line AGN at z=0.272 and z=0.683, one is a starburst galaxy at z=0.016 and one, most unusually, is an apparently normal galaxy at z=0.158. These findings confirm and extend down to fainter X-ray fluxes the BeppoSAX results, in providing samples with a wide range of X-ray and optical properties. The ratio between the soft X-ray and the optical luminosity of the z=0.158 galaxy is a factor at least 30 higher than that of normal galaxies, and similar to those of AGN. The high X-ray luminosity and the lack of optical emission lines suggest an AGN in which either continuum beaming dominates, or emission lines are obscured or not efficiently produced.
80 - Shin Watanabe 2002
We present the first results of the Chandra and optical follow-up observations of hard X-ray sources detected in the ASCA Medium Sensitivity Survey (AMSS). Optical identifications are made for five objects. Three of them show either weak or absent op tical narrow emission lines and are at low redshift <z>~0.06. One of them is a broad line object at z=0.910 and one is a z=0.460 object with only narrow lines. All the narrow line objects show strong evidence for absorption in their X-ray spectra. Their line ratios are consistent with a Seyfert II/LINER identification as are the line widths. The three low redshift objects have the colors of normal galaxies and apparently the light is dominated by stars. This could be due to the extinction of the underlying nuclear continuum by the same matter that absorbs X-rays and/or due to the dilution of the central source by starlight. These results suggest that X-ray sources that appear as ``normal galaxies in optical and near-IR bands significantly contribute to the hard X-ray background. This population of objects has a high space density and probably dominates the entire population of active galaxies.
We report on 0.3-10 keV X-ray observations by the Chandra X-ray Observatory of the fields of 22 sources that were discovered as hard X-ray (20-100 keV) sources by the INTEGRAL satellite (IGR sources). The purpose of the Chandra observations is to loc alize the sources and to measure their soft X-ray spectra in order to determine the nature of the sources. We find very likely Chandra counterparts for 18 of the 22 sources. We discuss the implications for each source, considering previous results and new optical or IR identifications, and we identify or suggest identifications for the nature of 16 of the sources. Two of the sources, IGR J14003-6326 and IGR J17448-3232, are extended on arcminute scales. We identify the former as a pulsar wind nebula (PWN) with a surrounding supernova remnant (SNR) and the latter as a SNR. In the group of 242 IGR sources, there is only one other source that has previously been identified as a SNR. We confirm a previous identification of IGR J14331-6112 as an High-Mass X-ray Binary (HMXB), and we suggest that IGR J17404-3655, IGR J16287-5021, IGR J17354-3255, IGR J17507-2647, IGR J17586-2129, and IGR J13186-6257 are candidate HMXBs. Our results indicate or confirm that IGR J19267+1325, IGR J18173-2509, and IGR J18308-1232 are Cataclysmic Variables (CVs), and we suggest that IGR J15529-5029 may also be a CV. We confirm that IGR J14471-6414 is an Active Galactic Nucleus (AGN), and we also suggest that IGR J19443+2117 and IGR J18485-0047 may be AGN. Finally, we found Chandra counterparts for IGR J11098-6457 and IGR J18134-1636, but more information is required to determine the nature of these two sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا