ﻻ يوجد ملخص باللغة العربية
In the last decade, symmetry-protected bound states in the continuum (BICs) have proven to be an important design principle for creating and enhancing devices reliant upon states with high quality (Q) factors, such as sensors, lasers, and those for harmonic generation. However, as we show, current implementations of symmetry-protected BICs in photonic crystal slabs can only be found at the center of the Brillouin zone and below the Bragg-diffraction limit, which fundamentally restricts their use to single-frequency applications. By 3D-micro printing a photonic crystal structure using two-photon polymerization, we demonstrate that this limitation can be overcome by altering the radiative environment surrounding the slab to be a three-dimensional photonic crystal. This allows for the protection of a line of BICs by embedding it in a symmetry bandgap of the crystal. Moreover, we experimentally verify that just a single layer of this photonic crystal environment is sufficient. This concept significantly expands the design freedom available for developing next-generation devices with high-Q states.
Bound states in the continuum (BICs) in photonic crystals represent the unique solutions of wave equations possessing an infinite quality-factor. We design a type of bilayer photonic crystal and study the influence of symmetry and coupling between TE
Bound states in the continuum (BICs) are radiationless localized states embedded in the part of the parameter space that otherwise corresponds to radiative modes. Many decades after their original prediction and early observations in acoustic systems
Bound-states-in-the-continuum (BIC)is a wave-mechanical concept that generates resonances with vanishing spectral linewidths. It has many practical applications in Optics, such as narrow-band filters, mirror-less lasing, and nonlinear harmonic genera
Higher-order topological insulators (HOTIs) are recently discovered topological phases, possessing symmetry-protected corner states with fractional charges. An unexpected connection between these states and the seemingly unrelated phenomenon of bound
We show that point defects in two-dimensional photonic crystals can support bound states in the continuum (BICs). The mechanism of confinement is a symmetry mismatch between the defect mode and the Bloch modes of the photonic crystal. These BICs occu