ﻻ يوجد ملخص باللغة العربية
We describe the validation of the HERA Phase I software pipeline by a series of modular tests, building up to an end-to-end simulation. The philosophy of this approach is to validate the software and algorithms used in the Phase I upper limit analysis on wholly synthetic data satisfying the assumptions of that analysis, not addressing whether the actual data meet these assumptions. We discuss the organization of this validation approach, the specific modular tests performed, and the construction of the end-to-end simulations. We explicitly discuss the limitations in scope of the current simulation effort. With mock visibility data generated from a known analytic power spectrum and a wide range of realistic instrumental effects and foregrounds, we demonstrate that the current pipeline produces power spectrum estimates that are consistent with known analytic inputs to within thermal noise levels (at the 2 sigma level) for k > 0.2 h/Mpc for both bands and fields considered. Our input spectrum is intentionally amplified to enable a strong `detection at k ~0.2 h/Mpc -- at the level of ~25 sigma -- with foregrounds dominating on larger scales, and thermal noise dominating at smaller scales. Our pipeline is able to detect this amplified input signal after suppressing foregrounds with a dynamic range (foreground to noise ratio) of > 10^7. Our validation test suite uncovered several sources of scale-independent signal loss throughout the pipeline, whose amplitude is well-characterized and accounted for in the final estimates. We conclude with a discussion of the steps required for the next round of data analysis.
We report upper-limits on the Epoch of Reionization (EoR) 21 cm power spectrum at redshifts 7.9 and 10.4 with 18 nights of data ($sim36$ hours of integration) from Phase I of the Hydrogen Epoch of Reionization Array (HERA). The Phase I data show evid
The non-Gaussian nature of the epoch of reionization (EoR) 21-cm signal has a significant impact on the error variance of its power spectrum $P({bf textit{k}})$. We have used a large ensemble of semi-numerical simulations and an analytical model to e
Epoch of Reionization data analysis requires unprecedented levels of accuracy in radio interferometer pipelines. We have developed an imaging power spectrum analysis to meet these requirements and generate robust 21 cm EoR measurements. In this work,
21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power s
We discuss absolute calibration strategies for Phase I of the Hydrogen Epoch of Reionization Array (HERA), which aims to measure the cosmological 21 cm signal from the Epoch of Reionization (EoR). HERA is a drift-scan array with a 10 degree wide fiel