ﻻ يوجد ملخص باللغة العربية
Quantum learning (in metrology and machine learning) involves estimating unknown parameters from measurements of quantum states. The quantum Fisher information matrix can bound the average amount of information learnt about the unknown parameters per experimental trial. In several scenarios, it is advantageous to concentrate information in as few states as possible. Here, we present two go-go theorems proving that negativity, a narrower nonclassicality concept than noncommutation, enables unbounded and lossless distillation of Fisher information about multiple parameters in quantum learning.
Given a quantum circuit, a quantum computer can sample the output distribution exponentially faster in the number of bits than classical computers. A similar exponential separation has yet to be established in generative models through quantum sample
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme, which remains largely unknown due to the non-convex optimization landscape, the measurement error, and the unavoidable gate err
Quantum friction, the electromagnetic fluctuation-induced frictional force decelerating an atom which moves past a macroscopic dielectric body, has so far eluded experimental evidence despite more than three decades of theoretical studies. Inspired b
Generative modeling with machine learning has provided a new perspective on the data-driven task of reconstructing quantum states from a set of qubit measurements. As increasingly large experimental quantum devices are built in laboratories, the ques
We prove that the bipartite entangled state of rank three is distillable. So there is no rank three bipartite bound entangled state. By using this fact, We present some families of rank four states that are distillable. We also analyze the relation between the low rank state and the Werner state.