ترغب بنشر مسار تعليمي؟ اضغط هنا

Closing the window on WIMPy inelastic dark matter: journey to the end of the periodic table

67   0   0.0 ( 0 )
 نشر من قبل Ningqiang Song
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the reach of low-background experiments made of small quantities of heavy nuclear isotopes in probing the parameter space of inelastic dark matter that is kinematically inaccessible to classic direct detection experiments. Through inelastic scattering with target nuclei, dark matter can yield a signal either via nuclear recoil or nuclear excitation. We present new results based on this approach, using data from low-energy gamma quanta searches in low-background experiments with Hf and Os metal samples, and measurements with CaWO$_4$ and PbWO$_4$ crystals as scintillating bolometers. We place novel bounds on WIMPy inelastic dark matter up to mass splittings of about 640 keV, and provide forecasts for the reach of future experiments.



قيم البحث

اقرأ أيضاً

We study scenarios where Dark Matter is a weakly interacting particle (WIMP) embedded in an ElectroWeak multiplet. In particular, we consider real SU(2) representations with zero hypercharge, that automatically avoid direct detection constraints from tree-level Z-exchange. We compute for the first time all the calculable thermal masses for scalar and fermionic WIMPs, including Sommerfeld enhancement and bound states formation at leading order in gauge boson exchange and emission. WIMP masses of few hundred TeV are shown to be compatible both with s-wave unitarity of the annihilation cross-section, and perturbativity. We also provide theory uncertainties on the masses for all multiplets, which are shown to be significant for large SU(2) multiplets. We then outline a strategy to probe these scenarios at future experiments. Electroweak 3-plets and 5-plets have masses up to about 16 TeV and can efficiently be probed at a high energy muon collider. We study various experimental signatures, such as single and double gauge boson emission with missing energy, and disappearing tracks, and determine the collider energy and luminosity required to probe the thermal Dark Matter masses. Larger multiplets are out of reach of any realistic future collider, but can be tested in future gamma ray telescopes and possibly in large-exposure liquid Xenon experiments.
In this article we investigate the benefits of increasing the maximum nuclear recoil energy analysed in dark matter (DM) direct detection experiments. We focus on elastic DM-nucleus interactions, and work within the framework of effective field theor y (EFT) to describe the scattering cross section. In agreement with previous literature, we show that an increased maximum energy leads to more stringent upper bounds on the DM-nucleus cross section for the EFT operators, especially those with an explicit momentum dependence. In this article we extend the energy region of interest (ROI) to show that the optimal values of the maximum energy for xenon and argon are of the order of 500 keV and 300 keV, respectively. We then show how, if a signal compatible with DM is observed, an enlarged energy ROI leads to a better measurement of the DM mass and couplings. In particular, for a xenon detector, DM masses of the order of 200 GeV (2 TeV) or lower can be reconstructed for momentum-independent (-dependent) operators. We also investigate three-dimensional parameter reconstruction and apply it to the specific case of scalar DM and anapole DM. We find that opening the energy ROI is an excellent way to identify the linear combination of momentum-dependent and momentum-independent operators, and it is crucial to correctly distinguish these models. Finally, we show how an enlarged energy ROI also allows us to test astrophysical parameters of the DM halo, such as the DM escape speed.
We use NuSTAR observations of the Galactic Center to search for X-ray lines from the radiative decay of sterile neutrino dark matter. Finding no evidence of unknown lines, we set limits on the sterile neutrino mass and mixing angle. In most of the ma ss range 10-50 keV, these are now the strongest limits, at some masses improving upon previous limits by a factor of ~10. In the neutrino minimal standard model framework, where additional constraints from dark matter production and structure formation apply, the allowed parameter space is reduced by more than half. Future NuSTAR observations may be able to cover much of the remaining parameter space.
Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symme try that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark mesons and baryons results in several qualitatively different configurations of the resulting dark matter hadrons depending on the relative mass scales in the system.
105 - Gregory D. Mack 2007
We point out a new and largely model-independent constraint on the dark matter scattering cross section with nucleons, applying when this quantity is larger than for typical weakly interacting dark matter candidates. When the dark matter capture rate in Earth is efficient, the rate of energy deposition by dark matter self-annihilation products would grossly exceed the measured heat flow of Earth. This improves the spin-independent cross section constraints by many orders of magnitude, and closes the window between astrophysical constraints (at very large cross sections) and underground detector constraints (at small cross sections). In the applicable mass range, from about 1 to about 10^{10} GeV, the scattering cross section of dark matter with nucleons is then bounded from above by the latter constraints, and hence must be truly weak, as usually assumed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا