ﻻ يوجد ملخص باللغة العربية
We report a comprehensive high-pressure study on the antiferromagnetic topological insulator EuSn2As2 up to 21.1 GPa through measurements of synchrotron x-ray diffraction, electrical resistance, magnetic resistance, and Hall transports combined with first-principles calculations. No evident trace of a structural phase transition is detected. The Neel temperatures determined from resistance are increased from 24 to 77 K under pressure, which is resulted from the enhanced magnetic exchange couplings between Eu2+ ions yielded by our first-principles calculations. The negative magnetoresistance of EuSn2As2 persists to higher temperatures accordantly. However, the enhancement of the observed Neel temperatures deviates from the calculations obviously above 10.0 GPa. In addition, the magnitude of the magnetoresistance, the Hall coefficients, and the charge carrier densities show abrupt changes between 6.9 to 10.0 GPa. The abrupt changes probably originate from a pressure induced valence change of Eu ions from a divalent state to a divalent and trivalent mixed state. Our results provide insights into variation of the magnetism of EuSn2As2 and similar antiferromagnetic topological insulators under pressure.
Topological insulator with antiferromagnetic order can serve as an ideal platform for the realization of axion electrodynamics. In this paper, we report a systematic study of the axion topological insulator candidate EuIn$_2$As$_2$. A linear energy d
The magnetic properties of the van der Waals magnetic topological insulators MnBi$_2$Te$_4$ and MnBi$_4$Te$_7$ are investigated by magneto-transport measurements. We evidence that the relative strength of the inter-layer exchange coupling J to the un
Magnetic topological phases of quantum matter are an emerging frontier in physics and material science. Along these lines, several kagome magnets have appeared as the most promising platforms. Here, we explore magnetic correlations in the transition-
Three-dimensional topological insulators (TIs) have emerged as a unique state of quantum matter and generated enormous interests in condensed matter physics. The surfaces of a three dimensional (3D) TI are composed of a massless Dirac cone, which is
Dynamic manipulation of magnetism in topological materials is demonstrated here via a Floquet engineering approach using circularly polarized light. Increasing the strength of the laser field, besides the expected topological phase transition, the ma