ﻻ يوجد ملخص باللغة العربية
Self-action nonlinearity is a key aspect -- either as a foundational element or a detrimental factor -- of several optical spectroscopies and photonic devices. Supercontinuum generation, wavelength converters and chirped pulse amplification are just a few examples. The recent advent of Free Electron Lasers (FEL) fostered building on nonlinearity to propose new concepts and extend optical wavelengths paradigms for extreme ultraviolet (EUV) and X-ray regimes. No evidence for intrapulse dynamics, however, has been reported at such short wavelengths, where the light-matter interactions are ruled by the sharp absorption edges of core-electrons. Here, we provide experimental evidence for self-phase modulation of femtosecond FEL pulses, which we exploit for fine self-driven spectral tunability by interaction with sub-micrometric foils of selected monoatomic materials. Moving the pulse wavelength across the absorption edge, the spectral profile changes from a non-linear spectral blue-shift to a red-shifted broadening. These findings are rationalized accounting for ultrafast ionization and delayed thermal response of highly excited electrons above and below threshold, respectively.
We demonstrate experimentally the full tunability of a coherent femtosecond source in the whole ultraviolet spectral region. The experiment relies on the technique of high-order harmonic generation driven by a near-infrared parametric laser source in
We utilize coherent femtosecond extreme ultraviolet (EUV) pulses derived from a free electron laser (FEL) to generate transient periodic magnetization patterns with periods as short as 44 nm. Combining spatially periodic excitation with resonant prob
We use caustic beam shaping on 100 fs pulses to experimentally generate non-paraxial accelerating beams along a 60 degree circular arc, moving laterally by 14 mum over a 28 mum propagation length. This is the highest degree of transverse acceleration
We exploit inverse Raman scattering and solvated electron absorption to perform a quantitative characterization of the energy loss and ionization dynamics in water with tightly focused near-infrared femtosecond pulses. A comparison between experiment
We present an analysis of two experimental approaches to controlling the directionality of molecular rotation with ultrashort laser pulses. The two methods are based on the molecular interaction with either a pair of pulses (a double kick scheme) or