ﻻ يوجد ملخص باللغة العربية
Adoption processes in socio-technological systems have been widely studied both empirically and theoretically. The way in which social norms, behaviors, and even items such as books, music, or other commercial or technological product spread in a population is usually modeled as a process of social contagion, in which the agents of a social system can infect their neighbors on the underlying network of social contacts. More recently, various models have also been proposed to reproduce the typical dynamics of a process of discovery, in which an agent explores a space of relations between ideas or items in search for novelties. In both types of processes, the structure of the underlying networks, respectively, the network of social contacts in the first case, and the network of relations among items in the second one, plays a fundamental role. However, the two processes have been traditionally seen and studied independently. Here, we provide a brief overview of the existing models of social spreading and exploration and of the latest advancements in both directions. We propose to look at them as two complementary aspects of the same adoption process: on the one hand, there are items spreading over a social network of individuals influencing each other, and on the other hand, individuals explore a network of similarities among items to adopt. The two-fold nature of the approach proposed opens up new stimulating challenges for the scientific community of network and data scientists. We conclude by outlining some possible directions that we believe may be relevant to be explored in the coming years.
Innovation is the driving force of human progress. Recent urn models reproduce well the dynamics through which the discovery of a novelty may trigger further ones, in an expanding space of opportunities, but neglect the effects of social interactions
The study of motifs in networks can help researchers uncover links between the structure and function of networks in biology, sociology, economics, and many other areas. Empirical studies of networks have identified feedback loops, feedforward loops,
In this paper, we explore the relationship between the topological characteristics of a complex network and its robustness to sustained targeted attacks. Using synthesised scale-free, small-world and random networks, we look at a number of network me
In this work, we investigate a heterogeneous population in the modified Hegselmann-Krause opinion model on complex networks. We introduce the Shannon information entropy about all relative opinion clusters to characterize the cluster profile in the f
A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real netw