ترغب بنشر مسار تعليمي؟ اضغط هنا

Multifractality and Fock-space localization in many-body localized states: one-particle density matrix perspective

64   0   0.0 ( 0 )
 نشر من قبل Takahiro Orito
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many-body localization (MBL) is well characterized in Fock space. To quantify the degree of this Fock space localization, the multifractal dimension $D_q$ is employed; it has been claimed that $D_q$ shows a jump from the delocalized value $D_q=1$ in the ETH phase (ETH: eigenstate thermalization hypothesis) to a smaller value $0<D_q<1$ at the ETH-MBL transition, yet exhibiting a conspicuous discrepancy from the fully localized value $D_q=0$, which indicate that multifractality remains inside the MBL phase. Here, to better quantify the situation we employ, instead of the commonly used computational basis, the one-particle density matrix (OPDM) and use its eigenstates (natural orbitals) as a Fock state basis for representing many-body eigenstates $|psirangle$ of the system. Using this basis, we compute $D_q$ and other indices quantifying the Fock space localization, such as the local purity $S$, which is derived from the occupation spectrum ${n_alpha}$ (eigenvalues of the OPDM). We highlight the statistical distribution of Hamming distance $x_{mu u}$ occurring in the pair-wise coefficients $|a_mu|^2|a_ u|^2$ in $S$, and compare this with a related quantity considered in the literature.



قيم البحث

اقرأ أيضاً

We adopt a geometric perspective on Fock space to provide two complementary insights into the eigenstates in many-body-localized fermionic systems. On the one hand, individual many-body-localized eigenstates are well approximated by a Slater determin ant of single-particle orbitals. On the other hand, the orbitals of different eigenstates in a given system display a varying, and generally imperfect, degree of compatibility, as we quantify by a measure based on the projectors onto the corresponding single-particle subspaces. We study this incompatibility between states of fixed and differing particle number, as well as inside and outside the many-body-localized regime. This gives detailed insights into the emergence and strongly correlated nature of quasiparticle-like excitations in many-body localized systems, revealing intricate correlations between states of different particle number down to the level of individual realizations.
We study the eigenstates of a paradigmatic model of many-body localization in the Fock basis constructed out of the natural orbitals. By numerically studying the participation ratio, we identify a sharp crossover between different phases at a disorde r strength close to the disorder strength at which subdiffusive behaviour sets in, significantly below the many-body localization transition. We repeat the analysis in the conventionally used computational basis, and show that many-body localized eigenstates are much stronger localized in the Fock basis constructed out of the natural orbitals than in the computational basis.
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across the many-body localization transition (MBLT) in a disordered spi n chain, and use it to characterize the breakdown of the eigenstate thermalization hypothesis and to extract the many-body Thouless energy. We find a wide critical region around the MBLT, where Thouless energy becomes smaller than the level spacing, while matrix elements show critical dependence on the energy difference. In the same region, matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values, and shed light on the critical behaviour of MBL systems.
We show that the one-particle density matrix $rho$ can be used to characterize the interaction-driven many-body localization transition in closed fermionic systems. The natural orbitals (the eigenstates of $rho$) are localized in the many-body locali zed phase and spread out when one enters the delocalized phase, while the occupation spectrum (the set of eigenvalues of $rho$) reveals the distinctive Fock-space structure of the many-body eigenstates, exhibiting a step-like discontinuity in the localized phase. The associated one-particle occupation entropy is small in the localized phase and large in the delocalized phase, with diverging fluctuations at the transition. We analyze the inverse participation ratio of the natural orbitals and find that it is independent of system size in the localized phase.
We numerically study both the avalanche instability and many-body resonances in strongly-disordered spin chains exhibiting many-body localization (MBL). We distinguish between a finite-size/time MBL regime, and the asymptotic MBL phase, and identify some landmarks within the MBL regime. Our first landmark is an estimate of where the MBL phase becomes unstable to avalanches, obtained by measuring the slowest relaxation rate of a finite chain coupled to an infinite bath at one end. Our estimates indicate that the actual MBL-to-thermal phase transition, in infinite-length systems, occurs much deeper in the MBL regime than has been suggested by most previous studies. Our other landmarks involve system-wide resonances. We find that the effective matrix elements producing eigenstates with system-wide resonances are enormously broadly distributed. This means that the onset of such resonances in typical samples occurs quite deep in the MBL regime, and the first such resonances typically involve rare pairs of eigenstates that are farther apart in energy than the minimum gap. Thus we find that the resonance properties define two landmarks that divide the MBL regime in to three subregimes: (i) at strongest disorder, typical samples do not have any eigenstates that are involved in system-wide many-body resonances; (ii) there is a substantial intermediate regime where typical samples do have such resonances, but the pair of eigenstates with the minimum spectral gap does not; and (iii) in the weaker randomness regime, the minimum gap is involved in a many-body resonance and thus subject to level repulsion. Nevertheless, even in this third subregime, all but a vanishing fraction of eigenstates remain non-resonant and the system thus still appears MBL in many respects. Based on our estimates of the location of the avalanche instability, it might be that the MBL phase is only part of subregime (i).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا