ترغب بنشر مسار تعليمي؟ اضغط هنا

Equation of state of asymmetric nuclear matter and the tidal deformability of neutron star

149   0   0.0 ( 0 )
 نشر من قبل Dao Tien Khoa
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutron star (NS) is a unique astronomical compact object where the four fundamental interactions have been revealed from the observation and studied in different ways. While the macroscopic properties of NS like mass and radius can be determined within the General Relativity using a realistic equation of state (EOS) of NS matter, such an EOS is usually generated by a nuclear structure model like, e.g., the nuclear mean-field approach to asymmetric nuclear matter. Given the radius of NS extended to above 10 km and its mass up to twice the solar mass, NS is expected to be tidally deformed when it is embedded in a strong tidal field. Such a tidal effect was confirmed unambiguously in the gravitation wave signals detected recently by the LIGO and Virgo laser interferometers from GW170817, the first ever direct observation of a binary NS merger. A nonrelativistic mean-field study is carried out in the present work within the Hartree-Fock formalism to construct the EOS of NS matter, which is then used to determine the tidal deformability, gravitational mass, and radius of NS. The mean-field results are compared with the constraints imposed for these quantities by the global analysis of the observed GW170817 data, and a strong impact by the incompressibility of nuclear matter on the hydrostatic configuration of NS is shown.

قيم البحث

اقرأ أيضاً

90 - Tuhin Malik , N. Alam , M. Fortin 2018
Constraints set on key parameters of the nuclear matter equation of state (EoS) by the values of the tidal deformability, inferred from GW170817, are examined by using a diverse set of relativistic and non-relativistic mean field models. These models are consistent with bulk properties of finite nuclei as well as with the observed lower bound on the maximum mass of neutron star $sim 2 ~ {rm M}_odot$. The tidal deformability shows a strong correlation with specific linear combinations of the isoscalar and isovector nuclear matter parameters associated with the EoS. Such correlations suggest that a precise value of the tidal deformability can put tight bounds on several EoS parameters, in particular, on the slope of the incompressibility and the curvature of the symmetry energy. The tidal deformability obtained from the GW170817 and its UV/optical/infrared counterpart sets the radius of a canonical $1.4~ {rm M}_{odot}$ neutron star to be $11.82leqslant R_{1.4}leqslant13.72$ km.
We use a Bayesian inference analysis to explore the sensitivity of Taylor expansion parameters of the nuclear equation of state (EOS) to the neutron star dimensionless tidal deformability ($Lambda$) on 1 to 2 solar masses neutron stars. A global powe r law dependence between tidal deformability and compactness parameter (M/R) is verified over this mass region. To avoid superfluous correlations between the expansion parameters, we use a correlation-free EOS model based on a recently published meta-modeling approach. We find that assumptions in the prior distribution strongly influence the constraints on $Lambda$. The $Lambda$ constraints obtained from the neutron star merger event GW170817 prefer low values of $L_text{sym}$ and $K_text{sym}$, for a canonical neutron star with 1.4 solar mass. For neutron star with mass $<1.6$ solar mass, $L_text{sym}$ and $K_text{sym}$ are highly correlated with the tidal deformability. For more massive neutron stars, the tidal deformability is more strongly correlated with higher order Taylor expansion parameters.
We present an extension of a previous work where, assuming a simple free bosonic gas supplemented with a relativistic meand field model to describe the pure nucleonic part of the EoS, we studied the consequences that the first non-trivial hexaquark $ d^*$(2380) could have on the properties of neutron stars. Compared to that exploratory work we employ a standard non-linear Walecka model including additional terms that describe the interaction of the $d^*(2380)$ di-baryon with the other particles of the system through the exchange of $sigma$- and $omega$-meson fields. Our results have show that the presence of the $d^*(2380)$ leads to maximum masses compatible with the recent observations of $sim 2$M$_odot$ millisecond pulsars if the interaction of the $d^*(2380)$ is slightly repulsive or the $d^*(2380)$ does not interacts at all. An attractive interaction makes the equation of state too soft to be able to support a $2$M$_odot$ neutron star whereas an extremely repulsive one induces the collapse of the neutron star into a black hole as soon as the $d^*(2380)$ appears.
103 - Y. Lim , J. W. Holt 2019
We present predictions for neutron star tidal deformabilities obtained from a Bayesian analysis of the nuclear equation of state, assuming a minimal model at high-density that neglects the possibility of phase transitions. The Bayesian posterior prob ability distribution is constructed from priors obtained from microscopic many-body theory based on realistic two- and three-body nuclear forces, while the likelihood functions incorporate empirical information about the equation of state from nuclear experiments. The neutron star crust equation of state is constructed from the liquid drop model, and the core-crust transition density is found by comparing the energy per baryon in inhomogeneous matter and uniform nuclear matter. From the cold $beta$-equilibrated neutron star equation of state, we then compute neutron star tidal deformabilities as well as the mass-radius relationship. Finally, we investigate correlations between the neutron star tidal deformability and properties of finite nuclei.
The Bethe-Brueckner-Goldstone many-body theory of the Nuclear Equation of State is reviewed in some details. In the theory, one performs an expansion in terms of the Brueckner two-body scattering matrix and an ordering of the corresponding many-body diagrams according to the number of their hole-lines. Recent results are reported, both for symmetric and for pure neutron matter, based on realistic two-nucleon interactions. It is shown that there is strong evidence of convergence in the expansion. Once three-body forces are introduced, the phenomenological saturation point is reproduced and the theory is applied to the study of neutron star properties. One finds that in the interior of neutron stars the onset of hyperons strongly softens the Nuclear Equation of State. As a consequence, the maximum mass of neutron stars turns out to be at the lower limit of the present phenomenological observation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا