ترغب بنشر مسار تعليمي؟ اضغط هنا

Capturing 3D atomic defects and phonon localization at the 2D heterostructure interface

87   0   0.0 ( 0 )
 نشر من قبل Jianwei Miao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The 3D local atomic structures and crystal defects at the interfaces of heterostructures control their electronic, magnetic, optical, catalytic and topological quantum properties, but have thus far eluded any direct experimental determination. Here we determine the 3D local atomic positions at the interface of a MoS2-WSe2 heterojunction with picometer precision and correlate 3D atomic defects with localized vibrational properties at the epitaxial interface. We observe point defects, bond distortion, atomic-scale ripples and measure the full 3D strain tensor at the heterointerface. By using the experimental 3D atomic coordinates as direct input to first principles calculations, we reveal new phonon modes localized at the interface, which are corroborated by spatially resolved electron energy-loss spectroscopy. We expect that this work will open the door to correlate structure-property relationships of a wide range of heterostructure interfaces at the single-atom level.



قيم البحث

اقرأ أيضاً

The exceptional electronic, optical and chemical properties of two-dimensional materials strongly depend on the 3D atomic structure and crystal defects. Using Re-doped MoS2 as a model, here we develop scanning atomic electron tomography (sAET) to det ermine the 3D atomic positions and crystal defects such as dopants, vacancies and ripples with a precision down to 4 picometers. We measure the 3D bond distortion and local strain tensor induced by single dopants for the first time. By directly providing experimental 3D atomic coordinates to density functional theory (DFT), we obtain more truthful electronic band structures than those derived from conventional DFT calculations relying on relaxed 3D atomic models, which is confirmed by photoluminescence measurements. We anticipate that sAET is not only generally applicable to the determination of the 3D atomic coordinates of 2D materials, heterostructures and thin films, but also could transform ab initio calculations by using experimental 3D atomic coordinates as direct input to better predict and discover new physical, chemical and electronic properties.
Nucleation plays a critical role in many physical and biological phenomena ranging from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases. However, nucleation is a challenging process to study in experiments especially in the early stage when several atoms/molecules start to form a new phase from its parent phase. Here, we advance atomic electron tomography to study early stage nucleation at 4D atomic resolution. Using FePt nanoparticles as a model system, we reveal that early stage nuclei are irregularly shaped, each has a core of one to few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations differ from classical nucleation theory (CNT) and to explain them we propose the order parameter gradient (OPG) model. We show the OPG model generalizes CNT and energetically favours diffuse interfaces for small nuclei and sharp interfaces for large nuclei. We further corroborate this model using molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. We anticipate that the OPG model is applicable to different nucleation processes and our experimental method opens the door to study the structure and dynamics of materials with 4D atomic resolution.
The atomic structure at the interface between a two-dimensional (2D) and a three-dimensional (3D) material influences properties such as contact resistance, photo-response, and high-frequency performance. Moire engineering has yet to be explored for tailoring this 2D/3D interface, despite its success in enabling correlated physics at 2D/2D twisted van der Waals interfaces. Using epitaxially aligned MoS$_2$ /Au{111} as a model system, we apply a geometric convolution technique and four-dimensional scanning transmission electron microscopy (4D STEM) to show that the 3D nature of the Au structure generates two coexisting moire periods (18 Angstroms and 32 Angstroms) at the 2D/3D interface that are otherwise hidden in conventional electron microscopy imaging. We show, via ab initio electronic structure calculations, that charge density is modulated with the longer of these moire periods, illustrating the potential for (opto-)electronic modulation via moire engineering at the 2D/3D interface.
Semiconductor heterostructures based on layered two-dimensional transition metal dichalcogenides (TMD) interfaced to gallium nitride (GaN) are excellent material systems to realize broadband light emitters and absorbers. The surface properties of the polar semiconductor, such as GaN are dominated by interface phonons, thus the optical properties of the vertical heterostructure depend strongly on the interface exciton-phonon coupling. The origin and activation of different Raman modes in the heterostructure due to coupling between interfacial phonons and optically generated carriers in a monolayer MoS2-GaN (0001) heterostructure was observed. This coupling strongly influences the non-equilibrium absorption properties of MoS2 and the emission properties of both semiconductors. Density functional theory (DFT) calculations were performed to study the band alignment of the interface, which revealed a type-I heterostructure. The optical excitation with interband transition in MoS2 at K-point strongly modulates the C excitonic band in MoS2. The overlap of absorption and emission bands of GaN with the absorption bands of MoS2 induces the energy and charge transfer across the interface with an optical excitation at {Gamma}-point. A strong modulation of the excitonic absorption states is observed in MoS2 on GaN substrate with transient optical pump-probe spectroscopy. The interaction of carriers with phonons and defect states leads to the enhanced and blue shifted emission in MoS2 on GaN substrate. Our results demonstrate the relevance of interface coupling between phonons and carriers for the development of optical and electronic applications.
The breakdown of translational symmetry at heterointerfaces leads to the emergence of new phonon modes localized near the interface. These interface phonons play an essential role in thermal/electrical transport properties in devices especially in mi niature ones wherein the interface may dominate the entire response of the device. Knowledge of phonon dispersion at interfaces is therefore highly desirable for device design and optimization. Although theoretical work has begun decades ago, experimental research is totally absent due to challenges in achieving combined spatial, momentum and spectral resolutions required to probe localized phonon modes. Here we use electron energy loss spectroscopy in an electron microscope to directly measure both the local phonon density of states and the interface phonon dispersion relation for an epitaxial cBN-diamond heterointerface. In addition to bulk phonon modes, we observe acoustic and optical phonon modes localized at the interface, and modes isolated away from the interface. These features only appear within ~ 1 nm around the interface. The experimental results can be nicely reproduced by ab initio calculations. Our findings provide insights into lattice dynamics at heterointerfaces and should be practically useful in thermal/electrical engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا