ﻻ يوجد ملخص باللغة العربية
Hazy images are often subject to color distortion, blurring, and other visible quality degradation. Some existing CNN-based methods have great performance on removing homogeneous haze, but they are not robust in non-homogeneous case. The reasons are mainly in two folds. Firstly, due to the complicated haze distribution, texture details are easy to be lost during the dehazing process. Secondly, since the training pairs are hard to be collected, training on limited data can easily lead to over-fitting problem. To tackle these two issues, we introduce a novel dehazing network using 2D discrete wavelet transform, namely DW-GAN. Specifically, we propose a two-branch network to deal with the aforementioned problems. By utilizing wavelet transform in DWT branch, our proposed method can retain more high-frequency knowledge in feature maps. In order to prevent over-fitting, ImageNet pre-trained Res2Net is adopted in the knowledge adaptation branch. Owing to the robust feature representations of ImageNet pre-training, the generalization ability of our network is improved dramatically. Finally, a patch-based discriminator is used to reduce artifacts of the restored images. Extensive experimental results demonstrate that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively.
Single Image Super-resolution (SISR) produces high-resolution images with fine spatial resolutions from aremotely sensed image with low spatial resolution. Recently, deep learning and generative adversarial networks(GANs) have made breakthroughs for
In real-world underwater environment, exploration of seabed resources, underwater archaeology, and underwater fishing rely on a variety of sensors, vision sensor is the most important one due to its high information content, non-intrusive, and passiv
This paper proposes an end-to-end Efficient Re-parameterizationResidual Attention Network(ERRA-Net) to directly restore the nonhomogeneous hazy image. The contribution of this paper mainly has the following three aspects: 1) A novel Multi-branch Atte
Retinal artery/vein (A/V) classification lays the foundation for the quantitative analysis of retinal vessels, which is associated with potential risks of various cardiovascular and cerebral diseases. The topological connection relationship, which ha
This paper reviews the NTIRE 2020 Challenge on NonHomogeneous Dehazing of images (restoration of rich details in hazy image). We focus on the proposed solutions and their results evaluated on NH-Haze, a novel dataset consisting of 55 pairs of real ha