ترغب بنشر مسار تعليمي؟ اضغط هنا

Keyphrase Generation with Fine-Grained Evaluation-Guided Reinforcement Learning

99   0   0.0 ( 0 )
 نشر من قبل Yige Xu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Aiming to generate a set of keyphrases, Keyphrase Generation (KG) is a classical task for capturing the central idea from a given document. Based on Seq2Seq models, the previous reinforcement learning framework on KG tasks utilizes the evaluation metrics to further improve the well-trained neural models. However, these KG evaluation metrics such as $F_1@5$ and $F_1@M$ are only aware of the exact correctness of predictions on phrase-level and ignore the semantic similarities between similar predictions and targets, which inhibits the model from learning deep linguistic patterns. In response to this problem, we propose a new fine-grained evaluation metric to improve the RL framework, which considers different granularities: token-level $F_1$ score, edit distance, duplication, and prediction quantities. On the whole, the new framework includes two reward functions: the fine-grained evaluation score and the vanilla $F_1$ score. This framework helps the model identifying some partial match phrases which can be further optimized as the exact match ones. Experiments on KG benchmarks show that our proposed training framework outperforms the previous RL training frameworks among all evaluation scores. In addition, our method can effectively ease the synonym problem and generate a higher quality prediction. The source code is available at url{https://github.com/xuyige/FGRL4KG}.



قيم البحث

اقرأ أيضاً

Generating keyphrases that summarize the main points of a document is a fundamental task in natural language processing. Although existing generative models are capable of predicting multiple keyphrases for an input document as well as determining th e number of keyphrases to generate, they still suffer from the problem of generating too few keyphrases. To address this problem, we propose a reinforcement learning (RL) approach for keyphrase generation, with an adaptive reward function that encourages a model to generate both sufficient and accurate keyphrases. Furthermore, we introduce a new evaluation method that incorporates name variations of the ground-truth keyphrases using the Wikipedia knowledge base. Thus, our evaluation method can more robustly evaluate the quality of predicted keyphrases. Extensive experiments on five real-world datasets of different scales demonstrate that our RL approach consistently and significantly improves the performance of the state-of-the-art generative models with both conventional and new evaluation methods.
Keyphrase generation aims to summarize long documents with a collection of salient phrases. Deep neural models have demonstrated a remarkable success in this task, capable of predicting keyphrases that are even absent from a document. However, such a bstractiveness is acquired at the expense of a substantial amount of annotated data. In this paper, we present a novel method for keyphrase generation, AutoKeyGen, without the supervision of any human annotation. Motivated by the observation that an absent keyphrase in one document can appear in other places, in whole or in part, we first construct a phrase bank by pooling all phrases in a corpus. With this phrase bank, we then draw candidate absent keyphrases for each document through a partial matching process. To rank both types of candidates, we combine their lexical- and semantic-level similarities to the input document. Moreover, we utilize these top-ranked candidates as to train a deep generative model for more absent keyphrases. Extensive experiments demonstrate that AutoKeyGen outperforms all unsupervised baselines and can even beat strong supervised methods in certain cases.
Data augmentation is proven to be effective in many NLU tasks, especially for those suffering from data scarcity. In this paper, we present a powerful and easy to deploy text augmentation framework, Data Boost, which augments data through reinforceme nt learning guided conditional generation. We evaluate Data Boost on three diverse text classification tasks under five different classifier architectures. The result shows that Data Boost can boost the performance of classifiers especially in low-resource data scenarios. For instance, Data Boost improves F1 for the three tasks by 8.7% on average when given only 10% of the whole data for training. We also compare Data Boost with six prior text augmentation methods. Through human evaluations (N=178), we confirm that Data Boost augmentation has comparable quality as the original data with respect to readability and class consistency.
Keyphrase Generation (KG) is the task of generating central topics from a given document or literary work, which captures the crucial information necessary to understand the content. Documents such as scientific literature contain rich meta-sentence information, which represents the logical-semantic structure of the documents. However, previous approaches ignore the constraints of document logical structure, and hence they mistakenly generate keyphrases from unimportant sentences. To address this problem, we propose a new method called Sentence Selective Network (SenSeNet) to incorporate the meta-sentence inductive bias into KG. In SenSeNet, we use a straight-through estimator for end-to-end training and incorporate weak supervision in the training of the sentence selection module. Experimental results show that SenSeNet can consistently improve the performance of major KG models based on seq2seq framework, which demonstrate the effectiveness of capturing structural information and distinguishing the significance of sentences in KG task.
144 - Ning Ding , Yulin Chen , Xu Han 2021
As an effective approach to tune pre-trained language models (PLMs) for specific tasks, prompt-learning has recently attracted much attention from researchers. By using textit{cloze}-style language prompts to stimulate the versatile knowledge of PLMs , prompt-learning can achieve promising results on a series of NLP tasks, such as natural language inference, sentiment classification, and knowledge probing. In this work, we investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot and zero-shot scenarios. We first develop a simple and effective prompt-learning pipeline by constructing entity-oriented verbalizers and templates and conducting masked language modeling. Further, to tackle the zero-shot regime, we propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types. Extensive experiments on three fine-grained entity typing benchmarks (with up to 86 classes) under fully supervised, few-shot and zero-shot settings show that prompt-learning methods significantly outperform fine-tuning baselines, especially when the training data is insufficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا