ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-miss Identities and Spinor Genus Classification of Ternary Quadratic Forms with Congruence Conditions

67   0   0.0 ( 0 )
 نشر من قبل Kush Singhal
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Kush Singhal




اسأل ChatGPT حول البحث

In this paper, near-miss identities for the number of representations of some integral ternary quadratic forms with congruence conditions are found and proven. The genus and spinor genus of the corresponding lattice cosets are then classified. Finally, a complete genus and spinor genus classification for all conductor 2 lattice cosets of 2-adically unimodular lattices is given.



قيم البحث

اقرأ أيضاً

76 - Bing He 2020
Since the study by Jacobi and Hecke, Hecke-type series have received a lot of attention. Unlike such series associated with indefinite quadratic forms, identities on Hecke-type series associated with definite quadratic forms are quite rare in the lit erature. Motivated by the works of Liu, we first establish many parameterized identities with two parameters by employing different $q$-transformation formulas and then deduce various Hecke-type identities associated with definite quadratic forms by specializing the choice of these two parameters. As applications, we utilize some of these Hecke-type identities to establish families of inequalities for several partition functions. Our proofs heavily rely on some formulas from the work of Zhi-Guo Liu.
146 - Hai-Liang Wu , Li-Yuan Wang 2020
In this paper we study products of quadratic residues modulo odd primes and prove some identities involving quadratic residues. For instance, let $p$ be an odd prime. We prove that if $pequiv5pmod8$, then $$prod_{0<x<p/2,(frac{x}{p})=1}xequiv(-1)^{1+ r}pmod p,$$ where $(frac{cdot}{p})$ is the Legendre symbol and $r$ is the number of $4$-th power residues modulo $p$ in the interval $(0,p/2)$. Our work involves class number formula, quartic Gauss sums, Stickelbergers congruence and values of Dirichlet L-series at negative integers.
111 - Petr Somberg , Petr Zima 2020
We study invariant systems of PDEs defining Killing vector-valued forms, and then we specialize to Killing spinor-valued forms. We give a detailed treatment of their prolongation and integrability conditions by relating the point-wise values of solut ions to the curvature of the underlying manifold. As an example, we completely solve the equations on model spaces of constant curvature producing brand new solutions which do not come from the tensor product of Killing spinors and Killing-Yano forms.
229 - Kirti Joshi , Yichao Zhang 2015
We prove that amongst all real quadratic fields and all spaces of Hilbert modular forms of full level and of weight $2$ or greater, the product of two Hecke eigenforms is not a Hecke eigenform except for finitely many real quadratic fields and finite ly many weights. We show that for $mathbb Q(sqrt 5)$ there are exactly two such identities.
63 - Taiwang Deng 2019
We describe torsion classes in the first cohomology group of $text{SL}_2(mathbb{Z})$. In particular, we obtain generalized Dicksons invariants for p-power polynomial rings. Secondly, we describe torsion classes in the zero-th homology group of $text{ SL}_2(mathbb{Z})$ as a module over the torsion invariants. As application, we obtain various congruences between cuspidal forms of level one and Eisenstein series.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا