ﻻ يوجد ملخص باللغة العربية
Obscuration and confusion conspire to limit our knowledge of the inner Milky Way. Even at moderate distances, the identification of stellar systems becomes compounded by the extremely high density of background sources. Here we provide a very revealing example of these complications by unveiling a large, massive, young cluster in the Sagittarius arm that has escaped detection until now despite containing more than 30 stars brighter than $G=13$. By combining Gaia DR2 astrometry, Gaia and 2MASS photometry and optical spectroscopy, we find that the new cluster, which we name Valparaiso~1, located at $sim2.3:$kpc, is about 75~Ma old and includes a large complement of evolved stars, among which we highlight the 4~d classical Cepheid CM~Sct and an M-type giant that probably represents the first detection of an AGB star in a Galactic young open cluster. Although strong differential reddening renders accurate parameter determination unfeasible with the current dataset, direct comparison to clusters of similar age suggests that Valparaiso~1 was born as one of the most massive clusters in the Solar Neighbourhood, with an initial mass close to $10^{4}:$M$_{odot}$.
We present high-resolution optical images from the Hubble Space Telescope, X-ray images from the Chandra X-ray Observatory, and optical spectra from the Nordic Optical Telescope for a newly-discovered galaxy cluster, CHIPS1911+4455, at z=0.485+/-0.00
Molybdenum abundances in the stars from 13 different open clusters were determined. High-resolution stellar spectra were obtained using the VLT telescope equipped with the UVES spectrograph on Cerro Paranal, Chile. The Mo abundances were derived in t
We present multiwavelength linear polarimetric observations of 104 stars towards the region of young open cluster NGC 6823. The polarization towards NGC 6823 is dominated by foreground dust grains and we found the evidence for the presence of several
NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7 M$_{odot}$ st
Motivated by the recent, serendipitous discovery of the densest known galaxy, M60-UCD1, we present two initial findings from a follow-up search, using the Sloan Digital Sky Survey, Subaru/Suprime-Cam and Hubble Space Telescope imaging, and SOuthern A