ﻻ يوجد ملخص باللغة العربية
Correlated states emerge in low-dimensional systems owing to enhanced Coulomb interactions. Elucidating these states requires atomic scale characterization and delicate control capabilities. In this study, spectroscopic imaging-scanning tunneling microscopy was employed to investigate the correlated states residing in the one-dimensional electrons of the monolayer and bilayer MoSe2 mirror twin boundary (MTB). The Coulomb energies, determined by the wire length, drive the MTB into two types of ground states with distinct respective out-of-phase and in-phase charge orders. The two ground states can be reversibly converted through a metastable zero-energy state with in situ voltage pulses, which tunes the electron filling of the MTB via a polaronic process, as substantiated by first-principles calculations. Our modified Hubbard model reveals the ground states as correlated insulators from an on-site U-originated Coulomb interaction, dubbed Hubbard-type Coulomb blockade effect. Our work sets a foundation for understanding correlated physics in complex systems and for tailoring quantum states for nano-electronics applications.
The conductance through a quantum wire of cylindrical cross section and a weak bulge is solved exactly for two electrons within the Landauer-Buettiker formalism. We show that this open quantum dot exhibits spin-dependent Coulomb blockade resonances r
We report low-temperature differential conductance measurements in aluminum arsenide cleaved-edge overgrown quantum wires in the pinch-off regime. At zero source-drain bias we observe Coulomb blockade conductance resonances that become vanishingly sm
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures
We consider a tunnel junction formed between a fixed electrode and an oscillating one. Accumulation of the charge on the junction capacitor induces a force on the nano-mechanical oscillator. The junction is voltage biased and connected in series with
We propose that recent transport experiments revealing the existence of an energy gap in graphene nanoribbons may be understood in terms of Coulomb blockade. Electron interactions play a decisive role at the quantum dots which form due to the presenc