ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Line Properties of Axion Dark Matter Conversion in Neutron Stars

72   0   0.0 ( 0 )
 نشر من قبل Jamie McDonald
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Axions are well-motivated candidates for dark matter. Recently, much interest has focused on the detection of photons produced by the resonant conversion of axion dark matter in neutron star magnetospheres. Various groups have begun to obtain radio data to search for the signal, however, more work is needed to obtain a robust theory prediction for the corresponding radio lines. In this work we derive detailed properties for the signal, obtaining both the line shape and time-dependence. The principal physical effects are from refraction in the plasma as well as from gravitation which together lead to substantial lensing which varies over the pulse period. The time-dependence from the co-rotation of the plasma with the pulsar distorts the frequencies leading to a Doppler broadened signal whose width varies in time. For our predictions, we trace curvilinear rays to the line of sight using the full set of equations from Hamiltonian optics for a dispersive medium in curved spacetime. Thus, for the first time, we describe the detailed shape of the line signal as well as its time dependence, which is more pronounced compared to earlier results. Our prediction of the features of the signal will be essential for this kind of dark matter search.

قيم البحث

اقرأ أيضاً

The QCD axion or axion-like particles are candidates of dark matter of the universe. On the other hand, axion-like excitations exist in certain condensed matter systems, which implies that there can be interactions of dark matter particles with conde nsed matter axions. We discuss the relationship between the condensed matter axion and a collective spin-wave excitation in an anti-ferromagnetic insulator at the quantum level. The conversion rate of the light dark matter, such as the elementary particle axion or hidden photon, into the condensed matter axion is estimated for the discovery of the dark matter signals.
If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.
Axion dark matter (DM) may convert to radio-frequency electromagnetic radiation in the strong magnetic fields around neutron stars. The radio signature of such a process would be an ultra-narrow spectral peak at a frequency determined by the mass of the axion particle. We analyze data we collected from the Robert C. Byrd Green Bank Telescope in the L-band and the Effelsberg 100-m Telescope in the L-Band and S-band from a number of sources expected to produce bright signals of axion-photon conversion, including the Galactic Center of the Milky Way and the nearby isolated neutron stars RX J0720.4-3125 and RX J0806.4-4123. We find no evidence for axion DM and are able to set some of the strongest constraints to-date on the existence of axion DM in the highly-motivated mass range between ~5-11 $mu$eV.
We present an interesting Higgs portal model where an axion-like particle (ALP) couples to the Standard Model sector only via the Higgs field. The ALP becomes stable due to CP invariance and turns out to be a natural candidate for freeze-in dark matt er because its properties are controlled by the perturbative ALP shift symmetry. The portal coupling can be generated non-perturbatively by a hidden confining gauge sector, or radiatively by new leptons charged under the ALP shift symmetry. Such UV completions generally involve a CP violating phase, which makes the ALP unstable and decay through mixing with the Higgs boson, but can be sufficiently suppressed in a natural way by invoking additional symmetries.
Extending the Standard Model with three right-handed neutrinos and a simple QCD axion sector can account for neutrino oscillations, dark matter and baryon asymmetry; at the same time, it solves the strong CP problem, stabilizes the electroweak vacuum and can implement critical Higgs inflation (satisfying all current observational bounds). We perform here a general analysis of dark matter (DM) in such a model, which we call the $a u$MSM. Although critical Higgs inflation features a (quasi) inflection point of the inflaton potential we show that DM cannot receive a contribution from primordial black holes in the $a u$MSM. This leads to a multicomponent axion-sterile-neutrino DM and allows us to relate the axion parameters, such as the axion decay constant, to the neutrino parameters. We include several DM production mechanisms: the axion production via misalignment and decay of topological defects as well as the sterile-neutrino production through the resonant and non-resonant mechanisms and in the recently proposed CPT-symmetric universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا