ﻻ يوجد ملخص باللغة العربية
A dome-shaped phase diagram of superconducting critical temperature upon doping is often considered as a hallmark of unconventional superconductors. This behavior, observed in two-dimensional electron gases in $mathrm{SrTiO}_3$-based interfaces whose electronic density is controlled by field effect, has not been explained unambiguously yet. Here, we elaborate a generic scenario for the superconducting phase diagram of these oxide interfaces based on Schrodinger-Poisson numerical simulations of the quantum well and transport experiments on a double-gate field-effect device. We propose that the optimal doping point of maximum $T_c$ marks the transition between a single-band and a fragile two-gap s$pm$-wave superconducting state involving $t_{2g}$ bands of different orbital character. At the optimal doping point, we predict and observe experimentally a bifurcation in the dependence of $T_c$ on the carrier density, which is controlled by the details of the doping execution. Where applying a back-gate voltage triggers the filling of a high-energy $d_mathrm{xy}$ subband and initiates the overdoped regime, doping with a top-gate delays the filling of the subband and maintains the 2-DEG in the single-band superconducting state of higher $T_c$.
We measure the gate voltage ($V_g$) dependence of the superconducting properties and the spin-orbit interaction in the (111)-oriented LaAlO$_3$/SrTiO$_3$ interface. Superconductivity is observed in a dome-shaped region in the carrier density-temperat
Infinite-layer Nd1-xSrxNiO2 thin films with Sr doping level x from 0.08 to 0.3 were synthesized and investigated. We found a superconducting dome to be between 0.12 and 0.235 which is accompanied by a weakly insulating behaviour in both underdoped an
Using muon spin spectroscopy we have found that, for both Na$_x$CoO$_2$ (0.6 $leq x leq$ 0.9) and 3- and 4-layer cobaltites, a common low temperature magnetic state (which in some cases is manifest as an incommensurate spin density wave) forms in the
Multiple experiments have observed a sharp transition in the band structure of LaAlO$_3$/SrTiO$_3$ (001) interfaces as a function of applied gate voltage. This Lifshitz transition, between a single occupied band at low electron density and multiple o
A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials such as the cuprate high temperature superconductors. Because of its unique momentum-space discrimination, angle-resolve