ﻻ يوجد ملخص باللغة العربية
We present a study of far and near-ultraviolet emission from the accretion disk in a powerful Seyfert 1 galaxy IC4329A using observations performed with the Ultraviolet Imaging Telescope (UVIT) onboard AstroSat. These data provide the highest spatial resolution and deepest images of IC4329A in the far and near UV bands acquired to date. The excellent spatial resolution of the UVIT data has allowed us to accurately separate the extended emission from the host galaxy and the AGN emission in the far and near UV bands. We derive the intrinsic AGN flux after correcting for the Galactic and internal reddening, as well as for the contribution of emission lines from the broad and narrow-line regions. The intrinsic UV continuum emission shows a marked deficit compared to that expected from the standard models of the accretion disk around an estimated black hole mass of 1-2x10^8Msun when the disk extends to the innermost stable circular orbit. We find that the intrinsic UV continuum is fully consistent with the standard disk models, but only if the disk emits from distances larger than 80-150 gravitational radii.
We present five simultaneous UV/X-ray observations of IC4329A by AstroSat, performed over {a five-month} period. We utilize the excellent spatial resolution of the Ultra-Violet Imaging Telescope (UVIT) onboard AstroSat to reliably separate the intrin
We present the in-orbit performance and the first results from the ultra-violet Imaging telescope (UVIT) on ASTROSAT. UVIT consists of two identical 38cm coaligned telescopes, one for the FUV channel (130-180nm) and the other for the NUV (200-300nm)
Ultra Violet Imaging Telescope on ASTROSAT Satellite mission is a suite of Far Ultra Violet (FUV 130 to 180 nm), Near Ultra Violet (NUV 200 to 300 nm) and Visible band (VIS 320 to 550nm) imagers. ASTROSAT is the first multi wavelength mission of INDI
The temporal behaviour of X-rays from some AGN and microquasars is thought to arise from the rapid collapse of the hot, inner parts of their accretion discs. The collapse can occur over the radial infall timescale of the inner accretion disc. However
Ultraviolet Imaging Telescope (UVIT) is one of the payloads onboard AstroSat, Indias first multi-wavelength Astronomy mission. UVIT is primarily designed to make high resolution images in wide field, in three wavelength channels simultaneously: FUV (