ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient Octave-Spanning Parametric Down-Conversion at the Picojoule Level

146   0   0.0 ( 0 )
 نشر من قبل Marc Jankowski
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The generation and amplification of photons by parametric down-conversion in quadratic nonlinear media is used as a source of entangled photons, squeezed light, and short optical pulses at difficult to access wavelengths. Optical nonlinearities are inherently weak, and therefore the pump energy required to produce sufficient gain for efficient down-conversion has been limited to energies in excess of nanojoules. Here we use dispersion-engineered nonlinear nanowaveguides driven by femtosecond pulses to demonstrate efficient down-conversion at the picojoule level; we observe parametric gains in excess of 70 decibels with pump pulse energies as little as 4 picojoules. When driven with pulse energies in excess of 10 picojoules these waveguides amplify vacuum fluctuations to $>$10% of the pump power, and the generated bandwidth broadens to span an octave. These results represent a new class of parametric devices that combine sub-wavelength spatial confinement with femtosecond pulses to achieve efficient operation with remarkably low energy.

قيم البحث

اقرأ أيضاً

Parametric nonlinear optical processes allow for the generation of new wavelengths of coherent electromagnetic radiation. Their ability to create radiation that is widely tunable in wavelength is particularly appealing, with applications ranging from spectroscopy to quantum information processing. Unfortunately, existing tunable parametric sources are marred by deficiencies that obstruct their widespread adoption. Here we show that ultrahigh-Q crystalline microresonators made of magnesium fluoride can overcome these limitations, enabling compact and power-efficient devices capable of generating clean and widely-tunable sidebands. We consider several different resonators with carefully engineered dispersion profiles, achieving hundreds of nanometers of sideband tunability in each device when driven with a standard low-power laser at 1550 nm. In addition to direct observations of discrete tunability over an entire optical octave from 1083 nm to 2670 nm, we record signatures of mid-infrared sidebands at almost 4000 nm. The simplicity of the devices considered -- compounded by their remarkable tunability -- paves the way for low-cost, widely-tunable sources of electromagnetic radiation.
We present here a semiconductor injection laser operating in continuous wave with an emission covering more than one octave in frequency, and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneou s quantum cascade structure operating in the THz range. Laser emission in continuous wave takes place from 1.64 THz to 3.35 THz with optical powers in the mW range and more than 80 modes above threshold. Free-running beatnote investigations on narrow waveguides with linewidths of 980 Hz limited by jitter indicate frequency comb operation on a spectral bandwidth as wide as 624 GHz, making such devices ideal candidates for octave-spanning semiconductor-laser-based THz frequency combs.
All-dielectric optical metasurfaces are a workhorse in nano-optics due to both their ability to manipulate light in different degrees of freedom and their excellent performance at light frequency conversion. Here, we demonstrate first-time generation of photon pairs via spontaneous parametric-down conversion in lithium niobate quantum optical metasurfaces with electric and magnetic Mie-like resonances at various wavelengths. By engineering the quantum optical metasurface, we tailor the photon-pair spectrum in a controlled way. Within a narrow bandwidth around the resonance, the rate of pair production is enhanced up to two orders of magnitude compared to an unpatterned film of the same thickness and material. These results enable flat-optics sources of entangled photons -- a new promising platform for quantum optics experiments.
Frequency combs spanning over an octave have been successfully demonstrated in Kerr nonlinear microresonators on-chip. These micro-combs rely on both engineered dispersion, to enable generation of frequency components across the octave, and on engine ered coupling, to efficiently extract the generated light into an access waveguide while maintaining a close to critically-coupled pump. The latter is challenging as the spatial overlap between the access waveguide and the ring modes decays with frequency. This leads to strong coupling variation across the octave, with poor extraction at short wavelengths. Here, we investigate how a waveguide wrapped around a portion of the resonator, in a pulley scheme, can improve extraction of octave-spanning microcombs, in particular at short wavelengths. We use coupled mode theory to predict the performance of the pulley couplers, and demonstrate good agreement with experimental measurements. Using an optimal pulley coupling design, we demonstrate a 20~dB improvement in extraction at short wavelengths compared to straight waveguide coupling.
117 - G.Brida , M.Genovese , C. Novero 1999
We report the measurement of the photons flux produced in parametric down-conversion, performed in photon counting regime with actively quenched silicon avalanche photodiodes as single photon detectors. Measurements are done with the detector in a we ll defined geometrical and spectral situation. By comparison of the experimental data with the theory, a value for the second order susceptibilities of the non linear crystal can be inferred.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا