ﻻ يوجد ملخص باللغة العربية
The generation and amplification of photons by parametric down-conversion in quadratic nonlinear media is used as a source of entangled photons, squeezed light, and short optical pulses at difficult to access wavelengths. Optical nonlinearities are inherently weak, and therefore the pump energy required to produce sufficient gain for efficient down-conversion has been limited to energies in excess of nanojoules. Here we use dispersion-engineered nonlinear nanowaveguides driven by femtosecond pulses to demonstrate efficient down-conversion at the picojoule level; we observe parametric gains in excess of 70 decibels with pump pulse energies as little as 4 picojoules. When driven with pulse energies in excess of 10 picojoules these waveguides amplify vacuum fluctuations to $>$10% of the pump power, and the generated bandwidth broadens to span an octave. These results represent a new class of parametric devices that combine sub-wavelength spatial confinement with femtosecond pulses to achieve efficient operation with remarkably low energy.
Parametric nonlinear optical processes allow for the generation of new wavelengths of coherent electromagnetic radiation. Their ability to create radiation that is widely tunable in wavelength is particularly appealing, with applications ranging from
We present here a semiconductor injection laser operating in continuous wave with an emission covering more than one octave in frequency, and displaying homogeneous power distribution among the lasing modes. The gain medium is based on a heterogeneou
All-dielectric optical metasurfaces are a workhorse in nano-optics due to both their ability to manipulate light in different degrees of freedom and their excellent performance at light frequency conversion. Here, we demonstrate first-time generation
Frequency combs spanning over an octave have been successfully demonstrated in Kerr nonlinear microresonators on-chip. These micro-combs rely on both engineered dispersion, to enable generation of frequency components across the octave, and on engine
We report the measurement of the photons flux produced in parametric down-conversion, performed in photon counting regime with actively quenched silicon avalanche photodiodes as single photon detectors. Measurements are done with the detector in a we