ﻻ يوجد ملخص باللغة العربية
We revisit monochromatic and isotropic photon emissions from the zero-angularlinebreak-momentum sources (ZAMSs) near a Kerr black hole. We investigate the escape probability of the photons that can reach to infinity and study the energy shifts of these escaping photons, which could be expressed as the functions of the source radius and the black hole spin. We study the cases for generic source radius and black hole spin, but we pay special attention to the near-horizon (near-)extremal Kerr ((near-)NHEK) cases. We reproduce the relevant numerical results using a more efficient method and get new analytical results for (near-)extremal cases. The main non-trivial results are: in the NHEK region of a (near-)extremal Kerr black hole, the escape probability for a ZAMS tends to $frac{7}{24}approx 29.17%$, independent of the NHEK radius; at the innermost of the photon shell (IPS) in the near-NHEK region, the escape probability for a ZAMS tends to begin{equation} frac{5}{12} -frac{1}{sqrt{7}} + frac{2}{sqrt{7}pi}arctanfrac{1}{sqrt{7}}approx12.57% . onumber end{equation} The results show that the photon escape probability remains a relatively large nonzero value even though the ZAMS is in the deepest region of a near-horizon throat of a high spin Kerr black hole, as long as the ZAMS is outside the IPS. The energies of the escaping photons at infinity, however, are all redshifted but still visible in principle.
We investigate the spherical photon orbits in near-extremal Kerr spacetimes. We show that the spherical photon orbits with impact parameters in a finite range converge on the event horizon. Furthermore, we demonstrate that the Weyl curvature near the
We present new equilibrium solutions of stationary models of magnetized thick disks (or tori) around Kerr black holes with synchronised scalar hair. The models reported here largely extend our previous results based on constant radial distributions o
We present a general sufficient condition for the formation of black holes due to concentration of angular momentum. This is expressed in the form of a universal inequality, relating the size and angular momentum of bodies, and is proven in the conte
We study force-free magnetospheres in the Blandford-Znajek process from rapidly rotating black holes by adopting the near-horizon geometry of near-extreme Kerr black holes (near-NHEK). It is shown that the Znajek regularity condition on the horizon c
The general analysis of the relations between masses and angular momenta in the configurations composed of two balancing extremal Kerr particles is made on the basis of two exact solutions arising as extreme limits of the well-known double-Kerr space