ﻻ يوجد ملخص باللغة العربية
Quantum integrated photonics requires large-scale linear optical circuitry, and for many applications it is desirable to have a universally programmable circuit, able to implement an arbitrary unitary transformation on a number of modes. This has been achieved using the Reck scheme, consisting of a network of Mach Zehnder interferometers containing a variable phase shifter in one path, as well as an external phase shifter after each Mach Zehnder. It subsequently became apparent that with symmetric Mach Zehnders containing a phase shift in both paths, the external phase shifts are redundant, resulting in a more compact circuit. The rectangular Clements scheme improves on the Reck scheme in terms of circuit depth, but it has been thought that an external phase-shifter was necessary after each Mach Zehnder. Here, we show that the Clements scheme can be realised using symmetric Mach Zehnders, requiring only a small number of external phase-shifters that do not contribute to the depth of the circuit. This will result in a significant saving in the length of these devices, allowing more complex circuits to fit onto a photonic chip, and reducing the propagation losses associated with these circuits. We also discuss how similar savings can be made to alternative schemes which have robustness to imbalanced beam-splitters.
Black-box quantum state preparation is a fundamental primitive in quantum algorithms. Starting from Grover, a series of techniques have been devised to reduce the complexity. In this work, we propose to perform black-box state preparation using the t
We prove that every unitary acting on any multipartite system and having operator Schmidt rank equal to 2 can be diagonalized by local unitaries. This then implies that every such multipartite unitary is locally equivalent to a controlled unitary wit
A highly anticipated use of quantum computers is the simulation of complex quantum systems including molecules and other many-body systems. One promising method involves directly applying a linear combination of unitaries (LCU) to approximate a Taylo
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the pr
We present an algorithm for efficiently approximating of qubit unitaries over gate sets derived from totally definite quaternion algebras. It achieves $varepsilon$-approximations using circuits of length $O(log(1/varepsilon))$, which is asymptoticall