ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking Automatic Evaluation in Sentence Simplification

200   0   0.0 ( 0 )
 نشر من قبل Jacopo Staiano
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Automatic evaluation remains an open research question in Natural Language Generation. In the context of Sentence Simplification, this is particularly challenging: the task requires by nature to replace complex words with simpler ones that shares the same meaning. This limits the effectiveness of n-gram based metrics like BLEU. Going hand in hand with the recent advances in NLG, new metrics have been proposed, such as BERTScore for Machine Translation. In summarization, the QuestEval metric proposes to automatically compare two texts by questioning them. In this paper, we first propose a simple modification of QuestEval allowing it to tackle Sentence Simplification. We then extensively evaluate the correlations w.r.t. human judgement for several metrics including the recent BERTScore and QuestEval, and show that the latter obtain state-of-the-art correlations, outperforming standard metrics like BLEU and SARI. More importantly, we also show that a large part of the correlations are actually spurious for all the metrics. To investigate this phenomenon further, we release a new corpus of evaluated simplifications, this time not generated by systems but instead, written by humans. This allows us to remove the spurious correlations and draw very different conclusions from the original ones, resulting in a better understanding of these metrics. In particular, we raise concerns about very low correlations for most of traditional metrics. Our results show that the only significant measure of the Meaning Preservation is our adaptation of QuestEval.



قيم البحث

اقرأ أيضاً

We introduce EASSE, a Python package aiming to facilitate and standardise automatic evaluation and comparison of Sentence Simplification (SS) systems. EASSE provides a single access point to a broad range of evaluation resources: standard automatic m etrics for assessing SS outputs (e.g. SARI), word-level accuracy scores for certain simplification transformations, reference-independent quality estimation features (e.g. compression ratio), and standard test data for SS evaluation (e.g. TurkCorpus). Finally, EASSE generates easy-to-visualise reports on the various metrics and features above and on how a particular SS output fares against reference simplifications. Through experiments, we show that these functionalities allow for better comparison and understanding of the performance of SS systems.
Text simplification aims at making a text easier to read and understand by simplifying grammar and structure while keeping the underlying information identical. It is often considered an all-purpose generic task where the same simplification is suita ble for all; however multiple audiences can benefit from simplified text in different ways. We adapt a discrete parametrization mechanism that provides explicit control on simplification systems based on Sequence-to-Sequence models. As a result, users can condition the simplifications returned by a model on attributes such as length, amount of paraphrasing, lexical complexity and syntactic complexity. We also show that carefully chosen values of these attributes allow out-of-the-box Sequence-to-Sequence models to outperform their standard counterparts on simplification benchmarks. Our model, which we call ACCESS (as shorthand for AudienCe-CEntric Sentence Simplification), establishes the state of the art at 41.87 SARI on the WikiLarge test set, a +1.42 improvement over the best previously reported score.
This work improves monolingual sentence alignment for text simplification, specifically for text in standard and simple Wikipedia. We introduce a convolutional neural network structure to model similarity between two sentences. Due to the limitation of available parallel corpora, the model is trained in a semi-supervised way, by using the output of a knowledge-based high performance aligning system. We apply the resulting similarity score to rescore the knowledge-based output, and adapt the model by a small hand-aligned dataset. Experiments show that both rescoring and adaptation improve the performance of knowledge-based method.
In order to simplify a sentence, human editors perform multiple rewriting transformations: they split it into several shorter sentences, paraphrase words (i.e. replacing complex words or phrases by simpler synonyms), reorder components, and/or delete information deemed unnecessary. Despite these varied range of possible text alterations, current models for automatic sentence simplification are evaluated using datasets that are focused on a single transformation, such as lexical paraphrasing or splitting. This makes it impossible to understand the ability of simplification models in more realistic settings. To alleviate this limitation, this paper introduces ASSET, a new dataset for assessing sentence simplification in English. ASSET is a crowdsourced multi-reference corpus where each simplification was produced by executing several rewriting transformations. Through quantitative and qualitative experiments, we show that simplifications in ASSET are better at capturing characteristics of simplicity when compared to other standard evaluation datasets for the task. Furthermore, we motivate the need for developing better methods for automatic evaluation using ASSET, since we show that current popular metrics may not be suitable when multiple simplification transformations are performed.
The success of a text simplification system heavily depends on the quality and quantity of complex-simple sentence pairs in the training corpus, which are extracted by aligning sentences between parallel articles. To evaluate and improve sentence ali gnment quality, we create two manually annotated sentence-aligned datasets from two commonly used text simplification corpora, Newsela and Wikipedia. We propose a novel neural CRF alignment model which not only leverages the sequential nature of sentences in parallel documents but also utilizes a neural sentence pair model to capture semantic similarity. Experiments demonstrate that our proposed approach outperforms all the previous work on monolingual sentence alignment task by more than 5 points in F1. We apply our CRF aligner to construct two new text simplification datasets, Newsela-Auto and Wiki-Auto, which are much larger and of better quality compared to the existing datasets. A Transformer-based seq2seq model trained on our datasets establishes a new state-of-the-art for text simplification in both automatic and human evaluation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا