ترغب بنشر مسار تعليمي؟ اضغط هنا

The KAGRA underground environment and lessons for the Einstein Telescope

209   0   0.0 ( 0 )
 نشر من قبل Francesca Badaracco
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The KAGRA gravitational-wave detector in Japan is the only operating detector hosted in an underground infrastructure. Underground sites promise a greatly reduced contribution of the environment to detector noise thereby opening the possibility to extend the observation band to frequencies well below 10 Hz. For this reason, the proposed next-generation infrastructure Einstein Telescope in Europe would be realized underground aiming for an observation band that extends from 3 Hz to several kHz. However, it is known that ambient noise in the low-frequency band 10 Hz - 20 Hz at current surface sites of the Virgo and LIGO detectors is predominantly produced by the detector infrastructure. It is of utmost importance to avoid spoiling the quality of an underground site with noisy infrastructure, at least at frequencies where this noise can turn into a detector-sensitivity limitation. In this paper, we characterize the KAGRA underground site to determine the impact of its infrastructure on environmental fields. We find that while excess seismic noise is observed, its contribution in the important band below 20 Hz is minor preserving the full potential of this site to realize a low-frequency gravitational-wave detector. Moreover, we estimate the Newtonian-noise spectra of surface and underground seismic waves and of the acoustic field inside the caverns. We find that these will likely remain a minor contribution to KAGRAs instrument noise in the foreseeable future.



قيم البحث

اقرأ أيضاً

KAGRA is a 3-km interferometric gravitational wave telescope located in the Kamioka mine in Japan. It is the first km-class gravitational wave telescope constructed underground to reduce seismic noise, and the first km-class telescope to use cryogeni c cooling of test masses to reduce thermal noise. The construction of the infrastructure to house the interferometer in the tunnel, and the initial phase operation of the interferometer with a simple 3-km Michelson configuration have been completed. The first cryogenic operation is expected in 2018, and the observing runs with a full interferometer are expected in 2020s. The basic interferometer configuration and the current status of KAGRA are described.
KAGRA is a second-generation interferometric gravitational-wave detector with 3-km arms constructed at Kamioka, Gifu in Japan. It is now in its final installation phase, which we call bKAGRA (baseline KAGRA), with scientific observations expected to begin in late 2019. One of the advantages of KAGRA is its underground location of at least 200 m below the ground surface, which brings small seismic motion at low frequencies and high stability of the detector. Another advantage is that it cools down the sapphire test mass mirrors to cryogenic temperatures to reduce thermal noise. In April-May 2018, we have operated a 3-km Michelson interferometer with a cryogenic test mass for 10 days, which was the first time that km-scale interferometer was operated at cryogenic temperatures. In this article, we report the results of this bKAGRA Phase 1 operation. We have demonstrated the feasibility of 3-km interferometer alignment and control with cryogenic mirrors.
The coronagraphic instrument currently proposed for the WFIRST-AFTA mission will be the first example of a space-based coronagraph optimized for extremely high contrasts that are required for the direct imaging of exoplanets reflecting the light of t heir host star. While the design of this instrument is still in progress, this early stage of development is a particularly beneficial time to consider the operation of such an instrument. In this paper, we review current or planned operations on the Hubble Space Telescope (HST) and the James Webb Space Telescope (JWST) with a focus on which operational aspects will have relevance to the planned WFIRST-AFTA coronagraphic instrument. We identify five key aspects of operations that will require attention: 1) detector health and evolution, 2) wavefront control, 3) observing strategies/post-processing, 4) astrometric precision/target acquisition, and 5) polarimetry. We make suggestions on a path forward for each of these items.
The design of a complex instrument such as Einstein Telescope (ET) is based on a target sensitivity derived from an elaborate case for scientific exploration. At the same time it incorporates many trade-off decisions to maximise the scientific value by balancing the performance of the various subsystems against the cost of the installation and operation. In this paper we discuss the impact of a long signal recycling cavity (SRC) on the quantum noise performance. We show the reduction in sensitivity due to a long SRC for an ET high-frequency interferometer, provide details on possible compensations schemes and suggest a reduction of the SRC length. We also recall details of the trade-off between the length and optical losses for filter cavities, and show the strict requirements for an ET low-frequency interferometer. Finally, we present an alternative filter cavity design for an ET low-frequency interferometer making use of a coupled cavity, and discuss the advantages of the design in this context.
115 - T.Akutsu , M.Ando , S.Araki 2017
Major construction and initial-phase operation of a second-generation gravitational-wave detector KAGRA has been completed. The entire 3-km detector is installed underground in a mine in order to be isolated from background seismic vibrations on the surface. This allows us to achieve a good sensitivity at low frequencies and high stability of the detector. Bare-bones equipment for the interferometer operation has been installed and the first test run was accomplished in March and April of 2016 with a rather simple configuration. The initial configuration of KAGRA is named {it iKAGRA}. In this paper, we summarize the construction of KAGRA, including the study of the advantages and challenges of building an underground detector and the operation of the iKAGRA interferometer together with the geophysics interferometer that has been constructed in the same tunnel.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا