ترغب بنشر مسار تعليمي؟ اضغط هنا

Unlocking Compositional Generalization in Pre-trained Models Using Intermediate Representations

119   0   0.0 ( 0 )
 نشر من قبل Jonathan Herzig
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sequence-to-sequence (seq2seq) models are prevalent in semantic parsing, but have been found to struggle at out-of-distribution compositional generalization. While specialized model architectures and pre-training of seq2seq models have been proposed to address this issue, the former often comes at the cost of generality and the latter only shows limited success. In this paper, we study the impact of intermediate representations on compositional generalization in pre-trained seq2seq models, without changing the model architecture at all, and identify key aspects for designing effective representations. Instead of training to directly map natural language to an executable form, we map to a reversible or lossy intermediate representation that has stronger structural correspondence with natural language. The combination of our proposed intermediate representations and pre-trained models is surprisingly effective, where the best combinations obtain a new state-of-the-art on CFQ (+14.8 accuracy points) and on the template-splits of three text-to-SQL datasets (+15.0 to +19.4 accuracy points). This work highlights that intermediate representations provide an important and potentially overlooked degree of freedom for improving the compositional generalization abilities of pre-trained seq2seq models.



قيم البحث

اقرأ أيضاً

Chinese pre-trained language models usually process text as a sequence of characters, while ignoring more coarse granularity, e.g., words. In this work, we propose a novel pre-training paradigm for Chinese -- Lattice-BERT, which explicitly incorporat es word representations along with characters, thus can model a sentence in a multi-granularity manner. Specifically, we construct a lattice graph from the characters and words in a sentence and feed all these text units into transformers. We design a lattice position attention mechanism to exploit the lattice structures in self-attention layers. We further propose a masked segment prediction task to push the model to learn from rich but redundant information inherent in lattices, while avoiding learning unexpected tricks. Experiments on 11 Chinese natural language understanding tasks show that our model can bring an average increase of 1.5% under the 12-layer setting, which achieves new state-of-the-art among base-size models on the CLUE benchmarks. Further analysis shows that Lattice-BERT can harness the lattice structures, and the improvement comes from the exploration of redundant information and multi-granularity representations. Our code will be available at https://github.com/alibaba/pretrained-language-models/LatticeBERT.
Large scale Pre-trained Language Models have proven to be very powerful approach in various Natural language tasks. OpenAIs GPT-2 cite{radford2019language} is notable for its capability to generate fluent, well formulated, grammatically consistent te xt and for phrase completions. In this paper we leverage this generation capability of GPT-2 to generate paraphrases without any supervision from labelled data. We examine how the results compare with other supervised and unsupervised approaches and the effect of using paraphrases for data augmentation on downstream tasks such as classification. Our experiments show that paraphrases generated with our model are of good quality, are diverse and improves the downstream task performance when used for data augmentation.
Reasoning about events and tracking their influences is fundamental to understanding processes. In this paper, we present EIGEN - a method to leverage pre-trained language models to generate event influences conditioned on a context, nature of their influence, and the distance in a reasoning chain. We also derive a new dataset for research and evaluation of methods for event influence generation. EIGEN outperforms strong baselines both in terms of automated evaluation metrics (by 10 ROUGE points) and human judgments on closeness to reference and relevance of generations. Furthermore, we show that the event influences generated by EIGEN improve the performance on a what-if Question Answering (WIQA) benchmark (over 3% F1), especially for questions that require background knowledge and multi-hop reasoning.
While mainstream machine learning methods are known to have limited ability to compositionally generalize, new architectures and techniques continue to be proposed to address this limitation. We investigate state-of-the-art techniques and architectur es in order to assess their effectiveness in improving compositional generalization in semantic parsing tasks based on the SCAN and CFQ datasets. We show that masked language model (MLM) pre-training rivals SCAN-inspired architectures on primitive holdout splits. On a more complex compositional task, we show that pre-training leads to significant improvements in performance vs. comparable non-pre-trained models, whereas architectures proposed to encourage compositional generalization on SCAN or in the area of algorithm learning fail to lead to significant improvements. We establish a new state of the art on the CFQ compositional generalization benchmark using MLM pre-training together with an intermediate representation.
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge a re contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا