ﻻ يوجد ملخص باللغة العربية
The mono-photon signature emerging in an E6 Supersymmetric Standard Model (E6SSM) from inert higgsino Dark Matter (DM) is analyzed at future $e^+e^-$ colliders. As the inert neutral and charged higgsinos are nearly degenerate, the inert chargino is a rather long lived particle and the charged particle associated with its decay to the inert higgsino is quite soft. We show that the pair production of inert charginos at a 500 GeV electron-positron collider with an initial or final state photon is the most promising channel for probing the inert higgsino as one DM candidate within the E6SSM. We also emphasize that this signal has no chance of being observed at the Large Hadron Collider with higher energy and/or luminosity. Finally, we remark that, combined with a DM signal produced in Direct Detection experiments involving an active higgsino state as the second DM candidate, this dual evidence could point to a two-component DM version of the E6SSM.
An electron-positron linear collider in the energy range between 500 and 1000 GeV is of crucial importance to precisely test the Standard Model and to explore the physics beyond it. The physics program is complementary to that of the Large Hadron Col
In recent years there have been many proposals for new electron-positron colliders, such as the Circular Electron-Positron Collider, the International Linear Collider, and the Future Circular Collider in electron-positron mode. Much of the motivation
There is a recent proposal of identifying the Higgs particle of the Standard Model as a pseudo Nambu-Goldstone boson. This new broken symmetry introduces new particles and new interactions. Among these new interactions a central role to get a new phy
Flavor symmetries are useful to realize fermion flavor structures in the standard model. In particular, discrete $A_4$ symmetry is used to realize lepton flavor structures, and some scalars which are called flavon are introduced to break this symmetr
The review of using of compton backscattering method for determination of the beam energy in collider experiments is given.