ﻻ يوجد ملخص باللغة العربية
The current Siamese network based on region proposal network (RPN) has attracted great attention in visual tracking due to its excellent accuracy and high efficiency. However, the design of the RPN involves the selection of the number, scale, and aspect ratios of anchor boxes, which will affect the applicability and convenience of the model. Furthermore, these anchor boxes require complicated calculations, such as calculating their intersection-over-union (IoU) with ground truth bounding boxes.Due to the problems related to anchor boxes, we propose a simple yet effective anchor-free tracker (named Siamese corner networks, SiamCorners), which is end-to-end trained offline on large-scale image pairs. Specifically, we introduce a modified corner pooling layer to convert the bounding box estimate of the target into a pair of corner predictions (the bottom-right and the top-left corners). By tracking a target as a pair of corners, we avoid the need to design the anchor boxes. This will make the entire tracking algorithm more flexible and simple than anchorbased trackers. In our network design, we further introduce a layer-wise feature aggregation strategy that enables the corner pooling module to predict multiple corners for a tracking target in deep networks. We then introduce a new penalty term that is used to select an optimal tracking box in these candidate corners. Finally, SiamCorners achieves experimental results that are comparable to the state-of-art tracker while maintaining a high running speed. In particular, SiamCorners achieves a 53.7% AUC on NFS30 and a 61.4% AUC on UAV123, while still running at 42 frames per second (FPS).
Siamese-based trackers have achieved excellent performance on visual object tracking. However, the target template is not updated online, and the features of the target template and search image are computed independently in a Siamese architecture. I
Most of the existing trackers usually rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. Unfortunately, they typically call for tedious and heuristic configurations
Visual tracking plays an important role in perception system, which is a crucial part of intelligent transportation. Recently, Siamese network is a hot topic for visual tracking to estimate moving targets trajectory, due to its superior accuracy and
By decomposing the visual tracking task into two subproblems as classification for pixel category and regression for object bounding box at this pixel, we propose a novel fully convolutional Siamese network to solve visual tracking end-to-end in a pe
Recently spiking neural networks (SNNs), the third-generation of neural networks has shown remarkable capabilities of energy-efficient computing, which is a promising alternative for deep neural networks (DNNs) with high energy consumption. SNNs have