ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray transmission calibration of the gate valve for the X-ray astronomy satellite XRISM

103   0   0.0 ( 0 )
 نشر من قبل Takuya Midooka
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

textit{Resolve} onboard the X-ray satellite XRISM is a cryogenic instrument with an X-ray microcalorimeter in a Dewar. A lid partially transparent to X-rays (called gate valve, or GV) is installed at the top of the Dewar along the optical axis. Because observations will be made through the GV for the first few months, the X-ray transmission calibration of the GV is crucial for initial scientific outcomes. We present the results of our ground calibration campaign of the GV, which is composed of a Be window and a stainless steel mesh. For the stainless steel mesh, we measured its transmission using the X-ray beamline at ISAS. For the Be window, we used synchrotron facilities to measure the transmission and modeled the data with (i) photoelectric absorption and incoherent scattering of Be, (ii) photoelectric absorption of contaminants, and (iii) coherent scattering of Be changing at specific energies. We discuss the physical interpretation of the transmission discontinuity caused by the Bragg diffraction in poly-crystal Be, which we incorporated into our transmission phenomenological model. We present the X-ray diffraction measurement on the sample to support our interpretation. The measurements and the constructed model meet the calibration requirements of the GV. We also performed a spectral fitting of the Crab nebula observed with Hitomi SXS and confirmed improvements of the model parameters.

قيم البحث

اقرأ أيضاً

We have been developing P-channel Charge-Coupled Devices (CCDs) for the upcoming X-ray Astronomy Satellite XRISM, planned to be launched in 2021. While the basic design of the CCD camera (Soft X-ray Imager: SXI) is almost the same as that of the lost Hitomi (ASTRO-H) observatory, we are planning to reduce the light leakages that is one of the largest problems recognized in Hitomi data. We adopted a double-layer optical blocking layer on the XRISM CCDs and also added an extra aluminum layer on the backside of them. We develop a newly designed test sample CCD and irradiate it with optical light to evaluate the optical blocking performance. As a result, light leakages are effectively reduced compared with that of the Hitomi CCDs. We thus conclude that the issue is solved by the new design and that the XRISM CCDs satisfy the mission requirement for the SXI.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sens itive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of Delta E < 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
We report the radiation hardness of a p-channel CCD developed for the X-ray CCD camera onboard the XRISM satellite. This CCD has basically the same characteristics as the one used in the previous Hitomi satellite, but newly employs a notch structure of potential for signal charges by increasing the implant concentration in the channel. The new device was exposed up to approximately $7.9 times 10^{10} mathrm{~protons~cm^{-2}}$ at 100 MeV. The charge transfer inefficiency was estimated as a function of proton fluence with an ${}^{55} mathrm{Fe}$ source. A device without the notch structure was also examined for comparison. The result shows that the notch device has a significantly higher radiation hardness than those without the notch structure including the device adopted for Hitomi. This proves that the new CCD is radiation tolerant for space applications with a sufficient margin.
373 - Xuelei Cao 2019
The Medium Energy X-ray telescope (ME) is one of the three main telescopes on board the Insight Hard X-ray Modulation Telescope (Insight-HXMT) astronomy satellite. ME contains 1728 pixels of Si-PIN detectors sensitive in 5-30 keV with a total geometr ical area of 952 cm2. Application Specific Integrated Circuit (ASIC) chips, VA32TA6, is used to achieve low power consumption and low readout noise. The collimators define three kinds of field of views (FOVs) for the telescope, 1{deg}{times}4{deg}, 4{deg}{times}4{deg}, and blocked ones. Combination of such FOVs can be used to estimate the in-orbit X-ray and particle background components. The energy resolution of ME is ~3 keV at 17.8 keV (FWHM) and the time resolution is 255 {mu}s. In this paper, we introduce the design and performance of ME.
77 - C.Z. Liu , Y.F. Zhang , X.F. Li 2019
The Insight-Hard X-ray Modulation Telescope (Insight-HXMT) is a broad band X-ray and gamma-ray (1-3000 keV) astronomy satellite. The High Energy X-ray telescope (HE) is one of its three main telescopes. The main detector plane of HE is composed of 18 NaI(Tl)/CsI(Na) phoswich detectors, where NaI(Tl) serves as primary detector to measure ~ 20-250 keV photons incident from the field of view (FOV) defined by the collimators, and CsI(Na) is used as an active shield detector to NaI(Tl) by pulse shape discrimination. CsI(Na) is also used as an omnidirectional gamma-ray monitor. The HE collimators have a diverse FOV: 1.1{deg}x 5.7{deg} (15 units), 5.7{deg}x 5.7{deg} (2 units) and blocked (1 unit), thus the combined FOV of HE is about 5.7{deg}x 5.7{deg}. Each HE detector has a diameter of 190 mm, resulting in the total geometrical area of about 5100 cm_2. The energy resolution is ~15% at 60 keV. The timing accuracy is better than 10 {mu}s and dead-time for each detector is less than 10 {mu}s. HE is devoted to observe the spectra and temporal variability of X-ray sources in the 20-250 keV band either by pointing observations for known sources or scanning observations to unveil new sources, and to monitor the gamma-ray sky in 0.2-3 MeV. This paper presents the design and performance of the HE instruments. Results of the on-ground calibration experiments are also reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا