ﻻ يوجد ملخص باللغة العربية
Time-lapse seismic monitoring of carbon storage and sequestration is often challenging because the time-lapse signature of the growth of CO2 plumes is weak in amplitude and therefore difficult to detect seismically. This situation is compounded by the fact that the surveys are often coarsely sampled and not replicated to reduce costs. As a result, images obtained for different vintages (baseline and monitor surveys) often contain artifacts that may be attributed wrongly to time-lapse changes. To address these issues, we propose to invert the baseline and monitor surveys jointly. By using the joint recovery model, we exploit information shared between multiple time-lapse surveys. Contrary to other time-lapse methods, our approach does not rely on replicating the surveys to detect time-lapse changes. To illustrate this advantage, we present a numerical sensitivity study where CO2 is injected in a realistic synthetic model. This model is representative of the geology in the southeast of the North Sea, an area currently considered for carbon sequestration. Our example demonstrates that the joint recovery model improves the quality of time-lapse images allowing us to monitor the CO2 plume seismically.
Seismic data quality is vital to geophysical applications, so methods of data recovery, including denoising and interpolation, are common initial steps in the seismic data processing flow. We present a method to perform simultaneous interpolation and
In this work, an inverse problem in the fractional diffusion equation with random source is considered. The measurements used are the statistical moments of the realizations of single point data $u(x_0,t,omega).$ We build the representation of the so
When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its dissolution into solution results in acidification of the pore waters. As a consequence, the pore waters become more reactive, which leads to enhanced disso
Geologic shear fractures such as faults and slip surfaces involve marked friction along the discontinuities as they are subjected to significant confining pressures. This friction plays a critical role in the growth of these shear fractures, as revea
We report on a novel stochastic analysis of seismic time series for the Earths vertical velocity, by using methods originally developed for complex hierarchical systems, and in particular for turbulent flows. Analysis of the fluctuations of the detre