ﻻ يوجد ملخص باللغة العربية
We present an improved approach for generating a set of optimized frontier orbitals (HOMO and LUMO) that minimizes the energy of one double configuration. We further benchmark the effect of including such a double within a CIS or TD-DFT configuration interaction Hamiltonian for a set of test cases. We find that, although we cannot achieve quantitative accuracy, the algorithm is quite robust and routinely delivers an enormous qualitative improvement to standard single-reference electronic structure calculations.
Using a set of oscillator strengths and excited-state dipole moments of near full configuration interaction (FCI) quality determined for small compounds, we benchmark the performances of several single-reference wave function methods (CC2, CCSD, CC3,
This paper elaborates the integral transformation technique of [K. Pachucki, W. Cencek, and J. Komasa, J. Chem. Phys. 122, 184101 (2005)] and uses it for the case of the non-relativistic kinetic and Coulomb potential energy operators, as well as for
Hamiltonian and Schrodinger evolution equations on finite-dimensional projective space are analyzed in detail. Hartree-Fock (HF) manifold is introduced as a submanifold of many electron projective space of states. Evolution equations, exact and linea
In their famous paper Kohn and Sham formulated a formally exact density-functional theory (DFT) for the ground-state energy and density of a system of $N$ interacting electrons, albeit limited at the time by certain troubling representability questio
Defining and modeling the relation of inclusion between continuous belief function may be considered as an important operation in order to study their behaviors. Within this paper we will propose and present two forms of inclusion: The strict and the