ﻻ يوجد ملخص باللغة العربية
Chemical abundances in the Leo ring, the largest HI cloud in the local Universe, have recently been determined to be close or above solar, incompatible with a previously claimed primordial origin of the ring. The gas, pre-enriched in a galactic disk and tidally stripped, did not manage to form stars very efficiently in intergalactic space. We map nebular lines in 3 dense HI clumps of the Leo ring and complement these data with archival stellar continuum observations to investigate the slow building up of a sparse population of stars in localized areas of the ring. Individual young stars as massive as O7-types are powering some HII regions. The average star formation rate density is of order of 10^{-5} Msun/yr/kpc^2 and proceeds with local bursts a few hundred parsecs in size, where loose stellar associations of 500-1000 Msun occasionally host massive outliers. The far ultraviolet-to-Halpha emission ratio in nebular regions implies recent stellar bursts, from 2 to 7 Myr ago. The relation between the local HI gas density and the star formation rate in the ring is similar to what is found in dwarfs and outer disks with gas depletion times as long as 100~Gyrs. We find a candidate planetary nebula in a compact and faint Halpha region with [OIII]/Halpha line enhancement, consistent with the estimated mean stellar surface brightness of the ring. The presence of 1 kpc partial ring emitting weak Halpha lines around the brightest and youngest HII region suggests that local shocks might be the triggers of new star forming events.
The origin and fate of the most extended extragalactic neutral cloud known in the local Universe, the Leo ring, is still debated 38 years after its discovery. Its existence is alternatively attributed to leftover primordial gas with some low level of
Rich in HII regions, giant molecular clouds are natural laboratories to study massive stars and sequential star formation. The Galactic star forming complex W33 is located at l=~12.8deg and at a distance of 2.4 kpc, has a size of ~10 pc and a total m
In the local (redshift z~0) Universe, collisional ring galaxies make up only ~0.01% of galaxies and are formed by head-on galactic collisions that trigger radially propagating density waves. These striking systems provide key snapshots for dissecting
Young massive stars and stellar clusters continuously form in the Galactic disk, generating new HII regions within their natal giant molecular clouds and subsequently enriching the interstellar medium via their winds and supernovae. Massive stars are
Nearly 50 years ago, in the proceedings of the first IAU symposium on planetary nebulae, Lawrence H. Aller and Stanley J. Czyzak said that the problem of determination of the chemical compositions of planetary and other gaseous nebulae constitutes on