ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution and pressure of active Levy swimmers under confinement

91   0   0.0 ( 0 )
 نشر من قبل Tingtao Zhou
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many active matter systems are known to perform L{e}vy walks during migration or foraging. Such superdiffusive transport indicates long-range correlated dynamics. These behavior patterns have been observed for microswimmers such as bacteria in microfluidic experiments, where Gaussian noise assumptions are insufficient to explain the data. We introduce textit{active Levy swimmers} to model such behavior. The focus is on ideal swimmers that only interact with the walls but not with each other, which reduces to the classical Levy walk model but now under confinement. We study the density distribution in the channel and force exerted on the walls by the Levy swimmers, where the boundaries require proper explicit treatment. We analyze stronger confinement via a set of coupled kinetics equations and the swimmers stochastic trajectories. Previous literature demonstrated that power-law scaling in a multiscale analysis in free space results in a fractional diffusion equation. We show that in a channel, in the weak confinement limit active Levy swimmers are governed by a modified Riesz fractional derivative. Leveraging recent results on fractional fluxes, we derive steady state solutions for the bulk density distribution of active Levy swimmers in a channel, and demonstrate that these solutions agree well with particle simulations. The profiles are non-uniform over the entire domain, in contrast to constant-in-the-bulk profiles of active Brownian and run-and-tumble particles. Our theory provides a mathematical framework for Levy walks under confinement with sliding no-flux boundary conditions and provides a foundation for studies of interacting active Levy swimmers.



قيم البحث

اقرأ أيضاً

275 - Chiu Fan Lee 2013
I study the confinement-induced aggregation phenomenon in a minimal model of self-propelled particles inside a channel. Starting from first principles, I derive a set of equations that govern the density profile of such a system at the steady-state, and calculate analytically how the aggregation at the walls varies with the physical parameters of the system. I also investigate how the gradient of the particle density varies if the inside of the channel is partitioned into two regions within which the active particles exhibit distinct levels of fluctuations in their directions of travel.
We investigate the way in which oscillating dumb-bells, a simple microscopic model of apolar swimmers, move at low Reynolds number. In accordance with Purcells Scallop Theorem a single dumb-bell cannot swim because its stroke is reciprocal in time. H owever the motion of two or more dumb-bells, with mutual phase differences, is not time reversal invariant, and hence swimming is possible. We use analytical and numerical solutions of the Stokes equations to calculate the hydrodynamic interaction between two dumb-bell swimmers and to discuss their relative motion. The cooperative effect of interactions between swimmers is explored by considering first regular, and then random arrays of dumb-bells. We find that a square array acts as a micropump. The long time behaviour of suspensions of dumb-bells is investigated and compared to that of model polar swimmers.
The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solu tion in which it may self-propel. We develop a two-fluid model for this process of swimming under self-generated confinement. We solve exactly for the flow and the locomotion speed of a spherical swimmer located in a spherically symmetric system of two Newtonian fluids whose boundary moves with the swimmer. We also treat separately the special case of an immobile outer fluid. In all cases, we characterise the flow fields, their spatial decay, and the impact of both the viscosity ratio and the degree of confinement on the locomotion speed of the model swimmer. The spatial decay of the flow retains the same power-law decay as for locomotion in a single fluid but with a decreased magnitude. Independently of the assumption chosen to characterise the impact of confinement on the actuation applied by the swimmer, its locomotion speed always decreases with an increase in the degree of confinement. Our modelling results suggest that a low-viscosity region of at least six times the effective swimmer size is required to lead to swimming with speeds similar to locomotion in an infinite fluid, corresponding to a region of size above $approx 25~mu$m for Helicobacter pylori.
154 - Junfang Sheng , Kaifu Luo 2012
We investigate the chain conformation of ring polymers confined to a cylindrical nanochannel using both theoretical analysis and three dimensional Langevin dynamics simulations. We predict that the longitudinal size of a ring polymer scales with the chain length and the diameter of the channel in the same manner as that for linear chains based on scaling analysis and Flory-type theory. Moreover, Flory-type theory also gives the ratio of the longitudinal sizes for a ring polymer and a linear chain with identical chain length. These theoretical predictions are confirmed by numerical simulations. Finally, our simulation results show that this ratio first decreases and then saturates with increasing the chain stiffness, which has interpreted the discrepancy in experiments. Our results have biological significance.
Fish schools and bird flocks exhibit complex collective dynamics whose self-organization principles are largely unknown. The influence of hydrodynamics on such collectives has been relatively unexplored theoretically, in part due to the difficulty in modeling the temporally long-lived hydrodynamic interactions between many dynamic bodies. We address this through a novel discrete-time dynamical system (iterated map) that describes the hydrodynamic interactions between flapping swimmers arranged in one- and two-dimensional lattice formations. Our 1D results exhibit good agreement with previously published experimental data, in particular predicting the bistability of schooling states and new instabilities that can be probed in experimental settings. For 2D lattices, we determine the formations for which swimmers optimally benefit from hydrodynamic interactions. We thus obtain the following hierarchy: while a side-by-side single-row phalanx formation offers a small improvement over a solitary swimmer, 1D in-line and 2D rectangular lattice formations exhibit substantial improvements, with the 2D diamond lattice offering the largest hydrodynamic benefit. Generally, our self-consistent modeling framework may be broadly applicable to active systems in which the collective dynamics is primarily driven by a fluid-mediated memory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا