ترغب بنشر مسار تعليمي؟ اضغط هنا

Core-Envelope Haloes in Scalar Field Dark Matter with Repulsive Self-Interaction: Fluid Dynamics Beyond the de Broglie Wavelength

43   0   0.0 ( 0 )
 نشر من قبل Taha Dawoodbhoy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Scalar Field Dark Matter (SFDM) comprised of ultralight bosons has attracted great interest as an alternative to standard, collisionless Cold Dark Matter (CDM) because of its novel structure-formation dynamics, described by the coupled Schrodinger-Poisson equations. In the free-field (fuzzy) limit of SFDM (FDM), structure is inhibited below the de Broglie wavelength, but resembles CDM on larger scales. Virialized haloes have solitonic cores of radius $simlambda_text{deB}$, surrounded by CDM-like envelopes. When a strong enough repulsive self-interaction (SI) is also present, structure can be inhibited below a second length scale, $lambda_text{SI}$, with $lambda_text{SI}> lambda_text{deB}$ -- called the Thomas-Fermi (TF) regime. FDM dynamics differs from CDM because of quantum pressure, and SFDM-TF differs further by adding SI pressure. In the small-$lambda_text{deB}$ limit, however, we can model all three by fluid conservation equations for a compressible, $gamma=5/3$ ideal gas, with ideal gas pressure sourced by internal velocity dispersion and, for the TF regime, an added SI pressure, $P_text{SI}propto rho^2$. We use these fluid equations to simulate halo formation from gravitational collapse in 1D, spherical symmetry, demonstrating for the first time that SFDM-TF haloes form with cores the size of $R_text{TF}$, the radius of an SI-pressure-supported $(n=1)$-polytrope, surrounded by CDM-like envelopes. In comparison with rotation curves of dwarf galaxies in the local Universe, SFDM-TF haloes pass the [too-big-to-fail + cusp-core]-test if $R_text{TF}gtrsim 1$ kpc.

قيم البحث

اقرأ أيضاً

Scalar Field Dark Matter (SFDM) comprised of ultralight ($gtrsim 10^{-22}$ eV) bosons is an alternative to standard, collisionless Cold Dark Matter (CDM) that is CDM-like on large scales but inhibits small-scale structure formation. As a Bose-Einstei n condensate, its free-field (fuzzy) limit (FDM) suppresses structure below the de Broglie wavelength, $lambda_text{deB}$, creating virialized haloes with central cores of radius $simlambda_text{deB}$, surrounded by CDM-like envelopes, and a halo mass function (HMF) with a sharp cut-off on small scales. With a strong enough repulsive self-interaction (SI), structure is inhibited, instead, below the Thomas-Fermi (TF) radius, $R_text{TF}$ (the size of an SI-pressure-supported ($n=1$)-polytrope), when $R_text{TF} > lambda_text{deB}$. Previously, we developed tools to describe SFDM dynamics on scales above $lambda_text{deB}$ and showed that SFDM-TF haloes formed by Jeans-unstable collapse from non-cosmological initial conditions have $R_text{TF}$-sized cores, surrounded by CDM-like envelopes. Revisiting SFDM-TF in the cosmological context, we simulate halo formation by cosmological infall and collapse, and derive its transfer function from linear perturbation theory to produce cosmological initial conditions and predict statistical measures of structure formation, such as the HMF. Since FDM and SFDM-TF transfer functions both have small-scale cut-offs, we can align them to let observational constraints on FDM proxy for SFDM-TF, finding FDM with particle masses $1 lesssim m/(10^{-22} text{ eV}/c^2) lesssim 30$ corresponds to SFDM-TF with $10 gtrsim R_text{TF}/(1 text{ pc}) gtrsim 1$, favoring sub-galactic (sub-kpc) core-size. The SFDM-TF HMF cuts off gradually, however, leaving more small-mass haloes: its Jeans mass shrinks so fast, scales filtered early can still recover and grow!
Light Axionic Dark Matter, motivated by string theory, is increasingly favored for the no-WIMP era. Galaxy formation is suppressed below a Jeans scale, of $simeq 10^8 M_odot$ by setting the axion mass to, $m_B sim 10^{-22}$eV, and the large dark core s of dwarf galaxies are explained as solitons on the de-Broglie scale. This is persuasive, but detection of the inherent scalar field oscillation at the Compton frequency, $omega_B= (2.5{rm , months})^{-1}(m_B/10^{-22}eV)$, would be definitive. By evolving the coupled Schrodinger-Poisson equation for a Bose-Einstein condensate, we predict the dark matter is fully modulated by de-Broglie interference, with a dense soliton core of size $simeq 150pc$, at the Galactic center. The oscillating field pressure induces General Relativistic time dilation in proportion to the local dark matter density and pulsars within this dense core have detectably large timing residuals, of $simeq 400nsec/(m_B/10^{-22}eV)$. This is encouraging as many new pulsars should be discovered near the Galactic center with planned radio surveys. More generally, over the whole Galaxy, differences in dark matter density between pairs of pulsars imprints a pairwise Galactocentric signature that can be distinguished from an isotropic gravitational wave background.
313 - A.V. Khoperskov 2013
Using $N$-body simulations ($Nsim 10^6 - 10^7$), we examine how a non-axisymmetric dark halo affects the dynamical evolution of the structure in collisionless (stellar) discs. We demonstrate how the model parameters such as mass of the halo, initial conditions in the disc and the halo axes ratio affect morphology and kinematics of the stellar discs. We show that a non-axisymmetric halo can generate a large-scale spiral density pattern in the embedded stellar disc. The pattern is observed in the disc for many periods of its revolution, even if the disc is gravitationally over-stable. The growth of the spiral arms is not accompanied by significant dynamical heating of the disc, irrelevant to its initial parameters. We also investigate transformation of the dark halos shape driven by the long-lived spiral pattern in the disc . We show that the analysis of the velocity field in the stellar disc and in the spiral pattern gives us a possibility to figure out the spatial orientation of the triaxial-shaped dark halo and to measure the triaxiality.
We obtain predictions for the properties of cold dark matter annihilation radiation using high resolution hydrodynamic zoom-in cosmological simulations of Milky Way-like galaxies (APOSTLE project) carried out as part of the Evolution and Assembly of GaLaxies and their Environments (EAGLE) programme. Galactic halos in the simulation have significantly different properties from those assumed in the standard halo model often used in dark matter detection studies. The formation of the galaxy causes a contraction of the dark matter halo, whose density profile develops a steeper slope than the Navarro-Frenk-White (NFW) profile between $rapprox1.5$ kpc and $rapprox10$ kpc. At smaller radii, $rlesssim1.5$ kpc, the halos develop a flatter than NFW slope. This unexpected feature may be specific to our particular choice of subgrid physics model but nevertheless the dark matter density profiles agree within 30% as the mass resolution is increased by a factor 150. The inner regions of the halos are almost perfectly spherical (axis ratios $b/a > 0.97$ within $r=1$ kpc) and there is no offset larger than 45 pc between the centre of the stellar distribution and the centre of the dark halo. The morphology of the predicted dark matter annihilation radiation signal is in broad agreement with $gamma$-ray observations at large Galactic latitudes ($bgtrsim3^circ$). At smaller angles, the inferred signal in one of our four galaxies is similar to that which is observed but it is significantly weaker in the other three.
107 - Tommi Tenkanen 2019
Dark matter (DM) may have its origin in a pre-Big Bang epoch, the cosmic inflation. Here, we consider for the first time a broad class of scenarios where a massive free scalar field unavoidably reaches an equilibrium between its classical and quantum dynamics in a characteristic time scale during inflation and sources the DM density. The study gives the abundance and perturbation spectrum of any DM component sourced by the scalar field. We show that this class of scenarios generically predicts enhanced structure formation, allowing one to test models where DM interacts with matter only gravitationally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا