ﻻ يوجد ملخص باللغة العربية
In the current era of Noisy Intermediate-Scale Quantum (NISQ) technology, the practical use of quantum computers remains inhibited by our inability to aptly decouple qubits from their environment to mitigate computational errors. In this work, we introduce an approach by which knowledge of a qubits initial quantum state and the standard parameters describing its decoherence can be leveraged to mitigate the noise present during the execution of a single-qubit gate. We benchmark our protocol using cloud-based access to IBM quantum processors. On ibmq_rome, we demonstrate a reduction of the single-qubit error rate by $38%$, from $1.6 times 10 ^{-3}$ to $1.0 times 10 ^{-3}$, provided the initial state of the input qubit is known. On ibmq_bogota, we prove that our protocol will never decrease gate fidelity, provided the systems $T_1$ and $T_2$ times have not drifted above $100$ times their assumed values. The protocol can be used to reduce quantum state preparation errors, as well as to improve the fidelity of quantum circuits for which some knowledge of the qubits intermediate states can be inferred. This work presents a pathway to using information about noise levels and quantum state distributions to significantly reduce error rates associated with quantum gates via optimized decomposition into native gates.
Coherent operations constitutive for the implementation of single and multi-qubit quantum gates with trapped ions are demonstrated that are robust against variations in experimental parameters and intrinsically indeterministic system parameters. In p
To solve classically hard problems, quantum computers need to be resilient to the influence of noise and decoherence. In such a fault-tolerant quantum computer, noise-induced errors must be detected and corrected in real-time to prevent them from pro
We demonstrate a simple pulse shaping technique designed to improve the fidelity of spin-dependent force operations commonly used to implement entangling gates in trapped-ion systems. This extension of the M{o}lmer-S{o}rensen gate can theoretically s
Realizing an arbitrary single-qubit gate is a precursor for many quantum computational tasks, including the conventional approach to universal quantum computing. For superconducting qubits, single-qubit gates are usually realized by microwave pulses
We experimentally demonstrate the underlying physical mechanism of the recently proposed protocol for superreplication of quantum phase gates [W. Dur, P. Sekatski, and M. Skotiniotis, Phys. Rev. Lett. 114, 120503 (2015)], which allows to produce up t