ﻻ يوجد ملخص باللغة العربية
We systematically investigated the physical properties of amorphous Mo$_{rm x}$Si$_{1-x}$ films deposited by the magnetron co-sputtering technique. The critical temperature $T_C$ of Mo$_{rm x}$ Si$_{1-x}$ films increases gradually with the stoichiometry x, and the highest $T_C$=7.9 K was found in Mo$_{rm 0.83}$ Si$_{0.17}$. Beyond $x$=0.83, preformed Cooper pairs and superconducting domains persist in the films, despite the superconducting state with perfect zero-resistivity is absent. The thick films of Mo$_{rm 0.83}$ Si$_{0.17}$ show surprising degradation in which the onset of zero-resistivity is suppressed below 2 K. The thin Mo$_{rm 0.83}$ Si$_{0.17}$ films, however, reveal robust superconductivity even with thickness d$leq$1 nm. We also characterized wide microwires based on the 2 nm thin Mo$_{rm 0.8}$ Si$_{0.2}$ films with widths 40 and 60 $mu$m, which show single-photon sensitivity at 780 nm and 1550 nm wavelength
Amorphous molybdenum silicide compounds have attracted significant interest for potential device applications, particularly in single-photon detector. In this work, the temperature-dependent resistance and magneto-resistance behaviors were measured t
Recent progress in the development of superconducting nanowire single-photon detectors (SNSPDs) has delivered excellent performances, and has had a great impact on a range of research fields. The timing jitter, which denotes the temporal resolution o
We experimentally investigate the detection mechanism in a meandered molybdenum silicide (MoSi) superconducting nanowire single-photon detector by characterising the detection probability as a function of bias current in the wavelength range of 750 t
We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses we determine the absolute optical power absorbed by the NbN film and, via a resis
Superconducting properties of three series of amorphous WxSi1-x films with different thickness and stoichiometry were investigated by dc transport measurements in a magnetic field up to 9 T. These amorphous WxSi1-x films were deposited by magnetron c