ﻻ يوجد ملخص باللغة العربية
In October of 2020, China announced that it aims to start reducing its carbon dioxide (CO2) emissions before 2030 and achieve carbon neutrality before 20601. The surprise announcement came in the midst of the COVID-19 pandemic which caused a transient drop in Chinas emissions in the first half of 2020. Here, we show an unprecedented de-carbonization of Chinas power system in late 2020: although Chinas power related carbon emissions were 0.5% higher in 2020 than 2019, the majority (92.9%) of the increased power demand was met by increases in low-carbon (renewables and nuclear) generation (increased by 9.3%), as compared to only 0.4% increase for fossil fuels. Chinas low-carbon generation in the country grew in the second half of 2020, supplying a record high of 36.7% (increased by 1.9% compared to 2019) of total electricity in 2020, when the fossil production dropped to a historical low of 63.3%. Combined, the carbon intensity of Chinas power sector decreased to an historical low of 519.9 tCO2/GWh in 2020. If the fast decarbonization and slowed down power demand growth from 2019 to 2020 were to continue, by 2030, over half (50.8%) of Chinas power demand could be provided by low carbon sources. Our results thus reveal that China made progress towards its carbon neutrality target during the pandemic, and suggest the potential for substantial further decarbonization in the next few years if the latest trends persist.
Deep decarbonization of the electricity sector can be provided by a high penetration of renewable sources such as wind, solar PV and hydro power. Flexibility from hydro and storage complements the high temporal variability of wind and solar, and tran
In the first half of 2020, several countries have responded to the challenges posed by the Covid-19 pandemic by restricting their export of medical supplies. Such measures are meant to increase the domestic availability of critical goods, and are com
In an imaginary conversation with Guido Altarelli, I express my views on the status of particle physics beyond the Standard Model and its future prospects.
The power from wind and solar exhibits a nonlinear flickering variability, which typically occurs at time scales of a few seconds. We show that high-frequency monitoring of such renewable powers enables us to detect a transition, controlled by the fi
The Vietnamese Power system is expected to expand considerably in upcoming decades. However, pathways towards higher shares of renewables ought to be investigated. In this work, we investigate a highly renewable Vietnamese power system by jointly opt