ترغب بنشر مسار تعليمي؟ اضغط هنا

Boundary homogenization of a class of obstacle problems

132   0   0.0 ( 0 )
 نشر من قبل Hongyu Liu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study homogenization of a boundary obstacle problem on $ C^{1,alpha} $ domain $D$ for some elliptic equations with uniformly elliptic coefficient matrices $gamma$. For any $ epsiloninmathbb{R}_+$, $partial D=Gamma cup Sigma$, $Gamma cap Sigma=emptyset $ and $ S_{epsilon}subset Sigma $ with suitable assumptions, we prove that as $epsilon$ tends to zero, the energy minimizer $ u^{epsilon} $ of $ int_{D} |gamma abla u|^{2} dx $, subject to $ ugeq varphi $ on $ S_{varepsilon} $, up to a subsequence, converges weakly in $ H^{1}(D) $ to $ widetilde{u} $ which minimizes the energy functional $int_{D}|gamma abla u|^{2}+int_{Sigma} (u-varphi)^{2}_{-}mu(x) dS_{x}$, where $mu(x)$ depends on the structure of $S_{epsilon}$ and $ varphi $ is any given function in $C^{infty}(overline{D})$.

قيم البحث

اقرأ أيضاً

84 - Zhongwei Shen 2021
This paper is concerned with boundary regularity estimates in the homogenization of elliptic equations with rapidly oscillating and high-contrast coefficients. We establish uniform nontangential-maximal-function estimates for the Dirichlet, regularit y, and Neumann problems with $L^2$ boundary data in a periodically perforated Lipschitz domain.
76 - Jun Geng , Jinping Zhuge 2019
In this paper, we consider a family of second-order elliptic systems subject to a periodically oscillating Robin boundary condition. We establish the qualitative homogenization theorem on any Lipschitz domains satisfying a non-resonance condition. We also use the quantitative estimates of oscillatory integrals to obtain the dimension-dependent convergence rates in $L^2$, assuming that the domain is smooth and strictly convex.
In this paper we are concerned with a two-penalty boundary obstacle problem of interest in thermics, fluid dynamics and electricity. Specifically, we prove existence, uniqueness and optimal regularity of the solutions, and we establish structural properties of the free boundary.
This paper is concerned with periodic homogenization of second-order elliptic systems in divergence form with oscillating Dirichlet data or Neumann data of first order. We prove that the homogenized boundary data belong to $W^{1, p}$ for any $1<p<inf ty$. In particular, this implies that the boundary layer tails are Holder continuous of order $alpha$ for any $alpha in (0,1)$.
89 - Xavier Ros-Oton 2017
Free boundary problems are those described by PDEs that exhibit a priori unknown (free) interfaces or boundaries. These problems appear in Physics, Probability, Biology, Finance, or Industry, and the study of solutions and free boundaries uses method s from PDEs, Calculus of Variations, Geometric Measure Theory, and Harmonic Analysis. The most important mathematical challenge in this context is to understand the structure and regularity of free boundaries. In this paper we provide an invitation to this area of research by presenting, in a completely non-technical manner, some classical results as well as some recent results of the author.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا